Sensitivity analysis of the geomorphology flood index to extreme rainfall variability in Indonesia
DOI:
https://doi.org/10.61511/calamity.v2i1.2024.1834Keywords:
extreme rainfall, flood, flood hazard mapping, geomorphology flood indexAbstract
Background: Flooding is one of the most frequent and costly natural disasters worldwide. According to DIBI-BNPB data, Indonesia has experienced 11,806 flood events. Flood risk management is crucial to identify flood-prone areas, which can be done through Flood Hazard Mapping (FHM) using the Geomorphology Flood Index (GFI). While GFI relies on topographical factors, Indonesia's rainfall varies significantly, necessitating a sensitivity comparison across different extreme rainfall characteristics. Methods: This study compares conventional GFI (without rainfall) and modified GFI (incorporating extreme rainfall). It determines extreme rainfall return periods of 5, 10, 25, 50, and 100 years using the Generalized Extreme Value (GEV) method. These values are normalized into Ip-A and Ip-B indices, which are then integrated into the GFI model to estimate flood-prone areas. Findings: The Ip-A and Ip-B methods yield different results. At a 100-year return period, Ip-A produces the same flood extent as conventional GFI, whereas Ip-B varies. Maluku, with the highest extreme rainfall (323.91 mm/day), shows a larger flood extent than conventional GFI, while Java, with the lowest (188.11 mm/day), shows a smaller extent. Extreme rainfall variability significantly affects flood potential, making the Ip-B method highly sensitive to such variations. Conclusion: The study concludes that the Ip-A method produces flood potential areas similar to the conventional GFI at a 100-year return period, while the Ip-B method yields different flood extents depending on extreme rainfall intensity. The Ip-B method is highly sensitive to extreme rainfall variations, making it more responsive to regional differences in flood potential. Novelty/Originality of this article: This study introduces a novel approach by integrating extreme rainfall variability into the Geomorphology Flood Index (GFI) using two modified indices, Ip-A and Ip-B, to enhance flood hazard mapping accuracy.
References
Amri, M. R., Yuanti, G., Yunus, R., Wiguna, S., Adi, A. W., Ichwana, A. N., Randongkir, R. E., & Septian, R. T. (2016). Risiko bencana Indonesia. BNPB. https://inarisk.bnpb.go.id/pdf/Buku%20RBI_Final_low.pdf
Aprianda, T. (2022). Analisis Ambang Batas Nilai Curah Hujan Ekstrem di Indonesia. Institut Teknologi Bandung.
Barrocu, G., & Eslamian, S. (2022). Geomorphology and flooding. In Flood Handbook (pp. 23-54). CRC Press.
Bastola, H., & Diplas, P. (2023). Modeling bankfull channel geometry based on watershed and precipitation characteristics using dimensionless parameters. Water Resources Research, 59(6), e2022WR032688. https://doi.org/10.1029/2022WR032688
Bellos, V. (2012). Ways for flood hazard mapping in urbanised environments: A short. Water Util. J, 4, 25-31. https://www.ewra.net/wuj/pdf/WUJ_2012_04_03.pdf
Fisher, R. A., & Tippett, L. H. C. (1928). Limiting Forms of the Frequency Distribution of the Largest or Smallest Members of a Sample. Proceedings of the Cambridge Philosophical Society, 24, 180-190.
http://dx.doi.org/10.1017/S0305004100015681
Ghafuri, B., Montazeri, A., & Eslamian, S. (2024). Bankfull Stage and Discharge: A Comprehensive Review. Handbook of Climate Change Impacts on River Basin Management, 328-336.
Haan, N. (1977). A Tripartite Model of Ego Functioning: Values and Clinical Research Applications. The Journal of Nervous Mental Disorders, 148, 14-30.
https://doi.org/10.1097/00005053-196901000-00003
Hafiz, A., Nugraha, A., Ichwana, A. N., Nugroho, P., Septian, R. T., Randongkir, R. E., Pinuji, S. E., & Syauqi. (2019). Petunjuk Teknis Penyusunan Kajian Risiko Bencana Banjir. BNPB. https://coastalresilience.bnpb.go.id/wp-content/uploads/2024/04/MODUL-TEKNIS_KRB_GEA.pdf
Kubro, S. (2021). Modifikasi Metode Geomorphology Flood Index Menggunakan Parameter Curah Hujan. Institut Teknologi Bandung.
Manfreda, S., & Samela, C. (2019). A digital elevation model based method for a rapid estimation of flood inundation depth. Journal of Flood Risk Management, 12(1), e12541. https://doi.org/10.1111/jfr3.12541
Manfreda, S., Samela, C., Gioia, A., Consoli, G. G., Iacobellis, V., Giuzio, L., ... & Sole, A. (2015). Flood-prone areas assessment using linear binary classifiers based on flood maps obtained from 1D and 2D hydraulic models. Natural Hazards, 79, 735-754. https://doi.org/10.1007/s11069-015-1869-5
Mudashiru, R. B., Sabtu, N., & Abustan, I. (2021). Quantitative and semi-quantitative methods in flood hazard/susceptibility mapping: a review. Arabian Journal of Geosciences, 14(11), 941. https://doi.org/10.1007/s12517-021-07263-4
Parker, T., & Gallant, A. J. (2022). The role of heavy rainfall in drought in Australia. Weather and Climate Extremes, 38, 100528. https://doi.org/10.1016/j.wace.2022.100528
Qiao, S., Zeng, G., Wang, X., Dai, C., Sheng, M., Chen, Q., ... & Xu, H. (2021). Multiple heavy metals immobilization based on microbially induced carbonate precipitation by ureolytic bacteria and the precipitation patterns exploration. Chemosphere, 274, 129661. https://doi.org/10.1016/j.chemosphere.2021.129661
Rosgen, D. L. (1994). A classification of natural rivers. Catena, 22(3), 169-199. https://doi.org/10.1016/0341-8162(94)90001-9
Samela, C., Albano, R., Sole, A., & Manfreda, S. (2018). A GIS tool for cost-effective delineation of flood-prone areas. Computers, Environment and Urban Systems, 70, 43-52. https://doi.org/10.1016/j.compenvurbsys.2018.01.013
Samela, C., Troy, T. J., & Manfreda, S. (2017). Geomorphic classifiers for flood-prone areas delineation for data-scarce environments. Advances in water resources, 102, 13-28. https://doi.org/102. 10.1016/j.advwatres.2017.01.007
Sarker, S. (2023). Separation of floodplain flow and bankfull discharge: application of 1D momentum equation solver and MIKE 21C. CivilEng, 4(3), 933-948. https://doi.org/10.3390/civileng4030050
Sherwood, J. M., & Huitger, C. A. (2005). Bankfull Characteristics of Ohio Streams and Their Relation to Peak Streamflows. U.S. Geological Survey Scientific Investigation Report 2005-5153. https://pubs.usgs.gov/sir/2005/5153/pdf/Bankfull_book.pdf
Shojinaga, R., Hamilton, D., Burford, M. A., & Sobota, D. J. (2025). The effects of climate and geomorphology on bankfull conditions in subtropical Australian streams. Journal of Hydrology: Regional Studies, 59, 102356. https://doi.org/10.1016/j.ejrh.2025.102356
Suryadi, Y. (2007), Metoda Penentuan Indeks Banjir Berdasarkan Fungsi Debit Puncak Hidrograf Inflow, Luas Genangan, Kedalaman Genangan, dan Waktu Genangan (Studi Kasus pada DAS Citarum Hulu). Institut Teknologi Bandung.
Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F., Dutta, D., & Kim, S. J. E. M. (2017). Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environmental modelling & software, 90, 201-216. https://doi.org/10.1016/j.envsoft.2017.01.006
Van Campenhout, J., Houbrechts, G., Peeters, A., & Petit, F. (2020). Return period of characteristic discharges from the comparison between partial duration and annual series, application to the Walloon Rivers (Belgium). Water, 12(3), 792. https://doi.org/10.3390/w12030792
Wu, B., Wang, G., Xia, J., Fu, X., & Zhang, Y. (2008). Response of bankfull discharge to discharge and sediment load in the Lower Yellow River. Geomorphology, 100(3-4), 366-376. https://doi.org/10.1016/j.geomorph.2008.01.007
Zarrabi, R., McDermott, R., Erfani, S. M. H., & Cohen, S. (2025). Bankfull and Mean‐Flow Channel Geometry Estimation Through Machine Learning Algorithms Across the CONtiguous United States (CONUS). Water Resources Research, 61(2), e2024WR037997. https://doi.org/10.1029/2024WR037997
Zin, W. W., Kawasaki, A., Takeuchi, W., San, Z. M. L. T., Htun, K. Z., Aye, T. H., & Win, S. (2018). Flood hazard assessment of Bago river basin, Myanmar. Journal of Disaster Research, 13(1), 14-21. https://doi.org/10.20965/jdr.2018.p0014
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2024 Jessica Amanda Bintang

This work is licensed under a Creative Commons Attribution 4.0 International License.