Visualizing 2018 lombok earthquake in Indonesia using crowdsouring data

How people experience it

Authors

  • Abghy Aunurrahim Gadjah Mada University, Indonesia
  • Noorhadi Rahardjo Department of Geographic Information Science, Faculty of Geography, Gadjah Mada University; Yogykarta, Indonesia

DOI:

https://doi.org/10.61511/calamity.v1i1.2023.159

Keywords:

earthquake, Lombok, map, spatial big data, twitter, visualization

Abstract

Along with the development of science and technology, using big data, map makers can take advantage of crowdsourcing social media data on Twitter to obtain user location when uploading tweets, which can be called geolocated tweets. Earthquakes that occur very often in Indonesia often grab people's attention, especially netizens who use social media like Twitter. One of the major earthquakes that occurred in Indonesia in 2018 was the Lombok earthquake, which occurred twice in a row from July to August 2018. Using Twitter data, information and social responses related to the 2018 Lombok earthquake can be obtained, which can be used as evaluation material for public handling and responding. The information is then visualized in various forms, and one of the best visualization methods is selected.
This study uses Twint package in Python as a way of obtaining location data from Twitter. The method used to collect Twitter data is a case study on the social impact of the Lombok earthquake in Indonesia in 2018. The data observation method used is a simulation of several types of map visualization and survey methods in selecting the best type of visualization. The method of analysis used is by mapping the data on the number of tweets as the main object using various types of maps, as well as calculating survey results by scoring each group of questions.
The results of spatial data extraction from Twitter in this study obtained 2032 tweets that had been selected and cleaned from 11,584 tweets. Map visualization with the theme of the social impact of the Lombok earthquake in 2018 was compiled using five types of visualization, namely choropleth maps, proportional symbol maps, dot maps, hexagonal tessellation maps, and heat maps. Based on the results of the survey on selecting the best visualization, it was found that the choropleth map is the best visualization method according to respondents with a cartography background and respondents who are unfamiliar with cartography because the information displayed is easier to read and understand.

References

BMKG. n.d. Stasiun dan UPT BMKG. Accessed Oktober 9, 2019. https://www.bmkg.go.id/profil/stasiun-upt.bmkg

Carley, K. M., Malik, M., Landwehr, P. M., Pfeffer, J., & Kowalchuck, M. (2016). Crowd sourcing disaster management: The complex nature of Twitter usage in Padang Indonesia. Safety science, 90, 48-61. https://doi.org/10.1016/j.ssci.2016.04.002

CNN Indonesia. (2019). BMKG akan tambah 194 Alat Pendeteksi Gempa. Juli 17. Accessed Oktober 9, 2019. https://www.cnnindonesia.com/teknologi/20190716140455-199-412549/bmkg-akan-tambah-194-alat-pendeteksi-gempa-bumi.

Dharmawan, Ridho D. (2017). "Geovisualisasi Hexagonal Tesselation untuk Analisis Densitas Data Spasial Gempa Bumi di Indonesia secara Spasiotemporal." Skripsi. https://etd.repository.ugm.ac.id/penelitian/detail/127664

Dian, Aprillia. (2017). Memahami Makna Simpati dan Empati. Agustus 16. Accessed Maret 9, 2021. https://beritagar.id/artikel/gaya-hidup/memahami-makna-simpati-dan-empati.

Fraenkel, J R, N E Wallen, and Helen H Hyun. (2012). How to Design and Evaluate Research in Education. New York: McGraw-Hill. https://www.researchgate.net/publication/265086460_How_to_Design_and_Evaluate_Research_in_Education

Hadi, H. J., Shnain, A. H., Hadishaheed, S., & Ahmad, A. H. (2015). Big data and five V’s characteristics. International Journal of Advances in Electronics and Computer Science, 2(1), 16-23. http://iraj.doionline.org/dx/IJAECS-IRAJ-DOIONLINE-1635

Hargrave, Marshall. (2020). Crowdsourcing: Definition, How It Works, Types, and Examples. Investopedia. Accessed Juli 1, 2020. https://www.investopedia.com/terms/c/crowdsourcing.asp.

Irekponor, Victor E. (2019). Github marcuisvictor/twint. Juli. Accessed Maret 31, 2021. https://github.com/marquisvictor/twint

Ivan, I., & Horák, J. (2015). Metodika identifikace anomálních lokalit kriminality pomocí jádrových odhadů. Certifikovaná metodika. MV ČR 2015. https://www.researchgate.net/publication/303820957_Metodika_identifikace_anomalnich_lokalit_kriminality_pomoci_jadrovych_odhadu.

Kominfo. (2013). Kominfo : Pengguna Internet di Indonesia 63 juta orang. Accessed Juli 1, 2020. https://www.kominfo.go.id/content/detail/3415/kominfo-pengguna-internet-di-indonesia-63-juta-orang/.

Kropivnitskaya, Y., Tiampo, K. F., Qin, J., & Bauer, M. A. (2018). Real-time earthquake intensity estimation using streaming data analysis of social and physical sensors. Earthquakes and Multi-hazards Around the Pacific Rim, Vol. I, 137-155. https://doi.org/10.1007/s00024-016-1417-6

Kryvasheyeu, Y., Chen, H., Obradovich, N., Moro, E., Van Hentenryck, P., Fowler, J., & Cebrian, M. (2016). Rapid assessment of disaster damage using social media activity. Science advances, 2(3), e1500779. https://doi.org/10.1126/sciadv.1500779

Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2015). Geographic information science and systems. John Wiley & Sons. https://www.wiley.com/en-us/Geographic+Information+Science+and+Systems%2C+4th+Edition-p-9781119128458

Mennis Jeremy, and Diansheng Guo. (2009). "Spatial data mining and geographic knowledge discovery—An introduction." Computers, Environment and Urban Systems 403-408. https://doi.org/10.1016/j.compenvurbsys.2009.11.001

Netek, R., Pour, T., dan Slezakova, R. (2018). "Implementation of Heat Maps in Geographical Information System – Exploratory Study on Traflc Accident Data." Open Geosciences 10:367–384. https://www.researchgate.net/publication/327072330_Implementation_of_Heat_Maps_in_Geographical_Information_System_-_Exploratory_Study_on_Traffic_Accident_Data

Pusat Gempabumi dan Tsunami BMKG. (2018) . Katalog Gempa Bumi Signifikan dan Merusak. Juli 2019. Accessed Maret 25, 2021. https://cdn.bmkg.go.id/Web/Katalog-Gempabumi-Signifikan-dan-Merusak-1821-2018.pdf.

Tessa K. Anderson. (2009). Kernel density estimation and K-means clustering to profile road accident hotspots, Accident Analysis & Prevention, Volume 41, Issue 3, Pages 359-364, ISSN 0001-4575, https://doi.org/10.1016/j.aap.2008.12.014.

Umasugi, Ryana Aryadita. (2018). Selama 2018, Gempa di Indonesia Meningkat 4.648 Kali Dibanding 2017. Desember 29. Accessed Maret 25, 2021. https://megapolitan.kompas.com/read/2018/12/29/10303711/selama-2018-gempa-di-indonesia-meningkat-4648-kali-dibanding-2017.

Widowati, Hari. (2019). Katada: BMKG Catat 23 Kali Gempa Bumi yang Merusak Terjadi Selama 2018. Januari 8. Accessed Oktober 18, 2019. https://katadata.co.id/berita/2019/01/08/bmkg-catat-23-kali-gempa-bumi-yang-merusak-terjadi-selama-2018.

Zulfakriza, Z. (2018). Melihat Kembali Gempa Lombok 2018 dan Sejarah Kegempaannya. Accessed Juni 15, 2020. https://regional.kompas.com/read/2018/09/23/11321551/melihat-kembali-gempa-lombok-2018-dan-sejarah-kegempaannya?page=all.

Downloads

Published

2023-07-31

How to Cite

Aunurrahim, A., & Rahardjo , N. . (2023). Visualizing 2018 lombok earthquake in Indonesia using crowdsouring data: How people experience it. Calamity: A Journal of Disaster Technology and Engineering, 1(1), 51–64. https://doi.org/10.61511/calamity.v1i1.2023.159

Citation Check