Enhancing fire disaster management: Innovative approaches using physical peatland monitoring data

Authors

  • M. Bayu Rizky Prayoga School of Environmental Science, University of Indonesia, 10430, Indonesia
  • Mahawan Karuniasa School of Environmental Science, University of Indonesia, 10430, Indonesia
  • Evi Frimawaty School of Environmental Science, University of Indonesia, 10430, Indonesia

DOI:

https://doi.org/10.61511/calamity.v2i1.2024.1030

Keywords:

early detection, forest and land fires, hotspots, mitigation, peatland wetness

Abstract

Background: In Indonesia, the persistent occurrence of forest and land fires highlights the critical importance of early detection in determining the success of mitigation efforts. Method: This study explores several key aspects related to peatland wetness and its impact on fire prevention. Firstly, it examines the relationship between rainfall and the humidity and temperature of peatlands. Secondly, the study investigates peatland wetness as an indicator of hotspot emergence. Thirdly, the study evaluates stakeholder perceptions regarding the use of peat wetness monitoring in determining the emergency status of forest and land fire disasters. Findings: The study's results indicate that rainfall significantly influences peatland humidity, which in turn reflects the level of peat humidity and temperature. It was also found that peatlands with a Dry-Moderate humidity category can be a reliable indicator of the emergence of fire spots. The consensus among stakeholders is that monitoring peatland humidity is very important for decision-making related to emergency status. Finally, this study proposes a forest and land fire mitigation concept based on peatland humidity. Conclusion: This approach aims to reduce the risk of such fires by utilizing monitoring results to enhance preparedness, taking into consideration the current state of peatland wetness. Overall, this research underscores the importance of integrating peatland wetness monitoring into forest and land fire mitigation strategies to improve early detection and reduce the risk of fires.  Novelty/Originality of this study: A study of forest fires in Indonesia links peatland wetness to fire hotspots, providing a reliable indicator for early fire detection. This is an innovative approach to forest fire prevention.

References

Aguilera, Héctor, Moreno, L., Wesseling, J. G., Jiménez-Hernández, M. E., & Castaño, S. (2016). Soil moisture prediction to support management in semiarid wetlands during drying episodes. Catena, 147, 709–724. https://doi.org/10.1016/j.catena.2016.08.007

Austin, K. G., Schwantes, A., Gu, Y., & Kasibhatla, P. S. (2019). What causes deforestation in Indonesia? Environmental Research Letters, 14(2). https://doi.org/10.1088/1748-9326/aaf6db

Bonn, A., Allott, T., Evans, M., Joosten, H., & Stoneman, R. (2016). Peatland Restoration And Ecosystem Services: Science, Policy and Practice. Cambridge University Press.

Bowditch, E. A. D., McMorran, R., Bryce, R., & Smith, M. (2019). Perception and partnership: Developing forest resilience on private estates. Forest Policy and Economics, 99(December 2017), 110–122. https://doi.org/10.1016/j.forpol.2017.12.004

Burns, T. R. (2016). Sustainable development: Agents, systems and the environment. Current Sociology, 64(6), 875–906. https://doi.org/10.1177/0011392115600737

Cadman, T., Sarker, T., Muttaqin, Z., Nurfatriani, F., Salminah, M., & Maraseni, T. (2019). The role of fiscal instruments in encouraging the private sector and smallholders to reduce emissions from deforestation and forest degradation: Evidence from Indonesia. Forest Policy and Economics, 108(March), 101913. https://doi.org/10.1016/j.forpol.2019.04.017

Carmenta, R., Zabala, A., Daeli, W., & Phelps, J. (2017). Perceptions across scales of governance and the Indonesian peatland fires. Global Environmental Change, 46(July), 50–59. https://doi.org/10.1016/j.gloenvcha.2017.08.001

Carter, W. N. (2008). Disaster management: A disaster manager’s handbook. Asian Development bank.

CIFOR. (2020).Global Wetlands v3. https://www2.cifor.org/global-wetlands/

Cochrane, M. (2015). Above- and Belowground Tropical Rainforest Fire Dynamics. Geographic Information Science Center of Excellence (GIScCE) South Dakota State University.

Dargie, G. C., Lewis, S. L., Lawson, I. T., Mitchard, E. T. A., Page, S. E., Bocko, Y. E., & Ifo, S. A. (2017). Age, extent and carbon storage of the central Congo Basin peatland complex. Nature, 542(7639), 86–90. https://doi.org/10.1038/nature21048

Enrici, A., & Hubacek, K. (2016). Business as usual in Indonesia: governance factors effecting the acceleration of the deforestation rate after the introduction of REDD+. Energy, Ecology and Environment, 1(4), 183–196. https://doi.org/10.1007/s40974-016-0037-4

Erbaugh, J. T. (2019). Responsibilization and social forestry in Indonesia. Forest Policy and Economics, 109(August), 102019. https://doi.org/10.1016/j.forpol.2019.102019

Evans, C. D., Williamson, J. M., Kacaribu, F., Irawan, D., Suardiwerianto, Y., Hidayat, M. F., Laurén, A., & Page, S. E. (2019). Rates and spatial variability of peat subsidence in Acacia plantation and forest landscapes in Sumatra, Indonesia. Geoderma, 338(August 2018), 410–421. https://doi.org/10.1016/j.geoderma.2018.12.028

Faturahman, B. M. (2017). Reformasi administrasi dalam manajemen bencana. MIMBAR YUSTITIA: Jurnal Hukum dan Hak Asasi Manusia, 1(2), 185-201. https://doi.org/10.52166/mimbar.v1i2.1109

Field, R. D., Van Der Werf, G. R., Fanin, T., Fetzer, E. J., Fuller, R., Jethva, H., Levy, R., Livesey, N. J., Luo, M., Torres, O., & Worden, H. M. (2016). Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. Proceedings of the National Academy of Sciences of the United States of America, 113(33), 9204–9209. https://doi.org/10.1073/pnas.1524888113

Floress, K., Vokoun, M., Huff, E. S., & Baker, M. (2019). Public perceptions of county, state, and national forest management in Wisconsin, USA. Forest Policy and Economics, 104(March), 10–120. https://doi.org/10.1016/j.forpol.2019.04.008

Fujii, Y., Iriana, W., Oda, M., Puriwigati, A., Tohno, S., Lestari, P., Mizohata, A., & Huboyo, H. S. (2014). Characteristics of carbonaceous aerosols emitted from peatland fire in Riau, Sumatra, Indonesia. Atmospheric Environment, 87, 164–169. https://doi.org/10.1016/j.atmosenv.2014.01.037

Glauber, A. J., & Gunawan, I. (2015). The cost of fire. An economic analysis of Indonesia’s 2015 fire crisis. In The World Bank (Vol. 17, Issue 5). World Bank. Retrivied from http://documents.worldbank.org/curated/en/2016/03/26010885/cost-fire-economic-analysis-indonesia%E2%80%99s-2015-fire-crisis

Goldstein, Jenny E, Graham, L., Ansori, S., Vetrita, Y., Thomas, A., Applegate, G., Vayda, A. P., Saharjo, B. H., & Cochrane, M. A. (2020). Beyond slash-and- burn : The roles of human activities , altered hydrology and fuels in peat fi res in Central Kalimantan, Indonesia. Singapore Journal of Tropical Geography, 41(2), 1–19. https://doi.org/10.1111/sjtg.12319

Goto, E. A., & Picanço, J. de L. (2021). The role of risk perception outreach courses in the context of Disaster Risk Management: The example of São Paulo city, Brazil. International Journal of Disaster Risk Reduction, 60(May), 102307. https://doi.org/10.1016/j.ijdrr.2021.102307

Harrison, M. E., Page, S. E., & Limin, S. H. (2009). The global impact of Indonesian forest fires. Biologist, 56(3), 156–163.

Huang, X., & Rein, G. (2017). Downward spread of smouldering peat fire: the role of moisture, density and oxygen supply. International Journal of Wildland Fire, 26(11), 907-918. https://doi.org/10.1071/WF16198

Huang, X., Restuccia, F., Rein, G., & Gramola, M. (2016). Experimental study on the surface spread of smoldering peat fires. In 5th International Fire Behavior and Fuels Conference (pp. 1-6). https://doi.org/10.1016/j.combustflame.2016.01.017

Huijnen, V., Wooster, M. J., Kaiser, J. W., Gaveau, D. L. A., Flemming, J., Parrington, M., Inness, A., Murdiyarso, D., Main, B., & Van Weele, M. (2016). Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Scientific Reports, 6(February), 1–8. https://doi.org/10.1038/srep26886

Januar, R., Sari, E. N. N., & Putra, S. (2021). Dynamics of local governance: The case of peatland restoration in Central Kalimantan, Indonesia. Land Use Policy, 102(January), 105270. https://doi.org/10.1016/j.landusepol.2020.105270

Jefferson, U., Carmenta, R., Daeli, W., & Phelps, J. (2020). Characterising policy responses to complex socio-ecological problems: 60 fire management interventions in Indonesian peatlands. Global Environmental Change, 60(March 2019). https://doi.org/10.1016/j.gloenvcha.2019.102027

Kusumastuti, R. D., Arviansyah, A., Nurmala, N., & Wibowo, S. S. (2021). Knowledge management and natural disaster preparedness: A systematic literature review and a case study of East Lombok, Indonesia. International Journal of Disaster Risk Reduction, 58(December 2020), 102223. https://doi.org/10.1016/j.ijdrr.2021.102223

Lan, Y., Tham, J., Jia, S., Sarkar, S., Fan, W. H., Reid, J. S., & ... (2021). Peat- forest burning smoke in Maritime Continent: Impacts on receptor PM2. 5 and implications at emission sources. In Environmental …. Elsevier. https://www.sciencedirect.com/science/article/pii/S0269749121002049

Miettinen, J., Hooijer, A., Vernimmen, R., Liew, S. C., & Page, S. E. (2017). From carbon sink to carbon source: Extensive peat oxidation in insular Southeast Asia since 1990. Environmental Research Letters, 12(2). https://doi.org/10.1088/1748-9326/aa5b6f

Ministry of National Development Planning/BAPPENAS. (2021). Indonesia's Voluntary National Review (VNR) 2021. https://sdgs.bappenas.go.id/laporan-voluntary-national-review-vnr-indonesia-2021/

Mockrin, M. H., Fishler, H. K., & Stewart, S. I. (2020). After the fire: Perceptions of land use planning to reduce wildfire risk in eight communities across the United States. International Journal of Disaster Risk Reduction, 45(August 2019), 101444. https://doi.org/10.1016/j.ijdrr.2019.101444

Monte, B. E. O., Goldenfum, J. A., Michel, G. P., & Cavalcanti, J. R. de A. (2021). Terminology of natural hazards and disasters: A review and the case of Brazil. International Journal of Disaster Risk Reduction, 52(October 2020). https://doi.org/10.1016/j.ijdrr.2020.101970

Mourao, P. R., & Martinho, V. D. (2019). Forest fire legislation: Reactive or proactive? Ecological Indicators, 104(April), 137–144. https://doi.org/10.1016/j.ecolind.2019.04.080

Nath, T. K., Dahalan, M. P. Bin, Parish, F., & Rengasamy, N. (2017). Local Peoples’ Appreciation on and Contribution to Conservation of Peatland Swamp Forests: Experience from Peninsular Malaysia. Wetlands, 37(6), 1067–1077. https://doi.org/10.1007/s13157-017-0941-1

National Disaster Management Agency. (2020). Indonesian Disaster Information Data (DIBI). http://bnpb.cloud/dibi/tabel1a

Ogra, A., Donovan, A., Adamson, G., Viswanathan, K. R., & Budimir, M. (2021). Exploring the gap between policy and action in Disaster Risk Reduction: A case study from India. International Journal of Disaster Risk Reduction, 63(November 2020), 102428. https://doi.org/10.1016/j.ijdrr.2021.102428

Palmer, C. E. (2001). the Extent and Causes of Illegal Logging: an Analysis of a Major Cause of Tropical Deforestation in Indonesia. CSERGE Working Paper, January 2001, 33. http://www.cserge.ucl.ac.uk/Illegal_Logging.pdf

Purnomo, H., Shantiko, B., Sitorus, S., Gunawan, H., Achdiawan, R., Kartodihardjo, H., & Dewayani, A. A. (2017). Fire economy and actor network of forest and land fires in Indonesia. Forest Policy and Economics, 78, 21–31. https://doi.org/10.1016/j.forpol.2017.01.001

Rana, I. A., Asim, M., Aslam, A. B., & Jamshed, A. (2021). Disaster management cycle and its application for flood risk reduction in urban areas of Pakistan. Urban Climate, 38(June), 100893. https://doi.org/10.1016/j.uclim.2021.100893

Rein, G. (2016). The S.F.P.E. handbook of fire protection engineering. In Fire Safety Journal. Springer. https://doi.org/10.1007/978-1-4939-2565-0

Restuccia, F., Huang, X., & Rein, G. (2017). Self-ignition of natural fuels: Can wildfires of carbon-rich soil start by self-heating? Fire Safety Journal, 91(February), 828–834. https://doi.org/10.1016/j.firesaf.2017.03.052

Sandhyavitri, A., Mukti, M. A., Siswanto, S., Fauzi, M., Suryawan, I., Hadi, F. R., & Gunawan, H. (2015). Mitigasi bencana banjir dan kebakaran.

Schaafsma, M., van Beukering, P. J. H., & Oskolokaite, I. (2017). Combining focus group discussions and choice experiments for economic valuation of peatland restoration: A case study in Central Kalimantan, Indonesia. Ecosystem Services, 27, 150–160. https://doi.org/10.1016/j.ecoser.2017.08.012

Stracher, G. B., Prakash, A., & Rein, G. (2015). Coal And Peat Fires: A Global Perspective. Elsevier.

Syaufina, L. (2018). Forest and land fires in Indonesia: Assessment and mitigation. In Integrating Disaster Science and Management: Global Case Studies in Mitigation and Recovery. Elsevier Inc. https://doi.org/10.1016/B978-0-12-812056-9.00008-7

Tacconi, Luca, Rodrigues, R. J., & Maryudi, A. (2019). Law enforcement and deforestation: Lessons for Indonesia from Brazil. Forest Policy and Economics, 108(June), 101943. https://doi.org/10.1016/j.forpol.2019.05.029

Tham, J., Sarkar, S., Jia, S., Reid, J. S., Mishra, S., Sudiana, I. M., Swarup, S., Ong, C. N., & Yu, L. E. (2019). Impacts of peat-forest smoke on urban PM2.5 in the Maritime Continent during 2012–2015: Carbonaceous profiles and indicators. Environmental Pollution, 248, 496–505. https://doi.org/10.1016/j.envpol.2019.02.049

Uda, S. K., Hein, L., & Adventa, A. (2020). Towards better use of Indonesian peatlands with paludiculture and low-drainage food crops. Wetlands Ecology and Management, 28, 509-526. https://doi.org/10.1007/s11273-020-09728-x

Uda, S. K., Hein, L., & Sumarga, E. (2017). Towards sustainable management of Indonesian tropical peatlands. Wetlands ecology and management, 25, 683-701. https://doi.org/10.1007/s11273-017-9544-0

Varkkey, H. (2013). Patronage politics, plantation fires and transboundary haze. Environmental Hazards, 12(3-4), 200-217. https://doi.org/10.1080/17477891.2012.759524

Ward, C., Stringer, L. C., Warren-Thomas, E., Agus, F., Crowson, M., Hamer, K., ... & Hill, J. K. (2021). Smallholder perceptions of land restoration activities: rewetting tropical peatland oil palm areas in Sumatra, Indonesia. Regional Environmental Change, 21, 1-17. https://doi.org/10.1007/s10113-020-01737-z

Warsito, G. M., Budiharsana, M. P., Burns, S., & Hartono, B. (2021). Hazed targets of the silver bullets: Transformation of disaster risk reduction policy into measurable actions in Indonesia development agenda. International Journal of Disaster Risk Reduction, 54(December 2020), 102029. https://doi.org/10.1016/j.ijdrr.2020.102029

Wiggins, E. B., Czimczik, C. I., Santos, G. M., Chen, Y., Xu, X., Holden, S. R., Randerson, J. T., Harvey, C. F., Kai, F. M., & Yu, L. E. (2018). Smoke radiocarbon measurements from Indonesian fires provide evidence for burning of millennia-aged peat. Proceedings of the National Academy of Sciences of the United States of America, 115(49), 12419–12424. https://doi.org/10.1073/pnas.1806003115

Wilkinson, S. L., Moore, P. A., Flannigan, M. D., Wotton, B. M., & Waddington, J. M. (2018). Did enhanced afforestation cause high severity peat burn in the Fort McMurray Horse River wildfire? Environmental Research Letters, 13(1). https://doi.org/10.1088/1748-9326/aaa136

Wösten, J. H. M., Clymans, E., Page, S. E., Rieley, J. O., & Limin, S. H. (2008). Peat-water interrelationships in a tropical peatland ecosystem in Southeast Asia. Catena, 73(2), 212–224. https://doi.org/10.1016/j.catena.2007.07.010

Yananto, A., Sartohadi, J., & Marhaento, H. (2022). Groundwater level estimation model on peatlands using SAR sentinel-1 data in part of Riau, Indonesia. International Journal of Remote Sensing and Earth Sciences (IJReSES), 18(2), 203-216. http://dx.doi.org/10.30536/j.ijreses.2021.v18.a3618

Downloads

Published

2024-07-31

How to Cite

Prayoga, M. B. R., Karuniasa, M., & Frimawaty, E. (2024). Enhancing fire disaster management: Innovative approaches using physical peatland monitoring data . Calamity: A Journal of Disaster Technology and Engineering, 2(1), 24–39. https://doi.org/10.61511/calamity.v2i1.2024.1030

Issue

Section

Articles

Citation Check