Bridging agronomy and pharmacology the antidiabetic promise of Oldenlandia
DOI:
https://doi.org/10.61511/bioculture.v3i2.2026.2459Keywords:
diabetes mellitus, herbal diabetes therapy, medicinal weeds, natural products, sustainable sourcingAbstract
Background: The growing global burden of diabetes and the limitations of current treatments require sustainable alternatives. This study aims to evaluate the potential of the weedy genus Oldenlandia as a novel, sustainable resource for diabetes management by synthesizing evidence from agronomy, phytochemistry, and pharmacology. Methods: A systematic literature review was conducted using major scientific databases. A multidisciplinary search strategy was employed, and the collected data were integrated using narrative synthesis. Findings: The analysis shows that Oldenlandia species are resilient plants requiring low agricultural inputs. They are rich in bioactive compounds like iridoids and flavonoids, and preclinical studies confirm significant antidiabetic effects, including lowered blood glucose and reduced inflammation via mechanisms such as AMPK-NF-κB pathway modulation. Conclusion: Oldenlandia presents a promising and sustainable candidate for developing new antidiabetic therapies, bridging traditional use with scientific validation. Novelty/Originality: This review offers a novel, integrated perspective that simultaneously evaluates the agronomic feasibility and pharmacological potential of a weed for diabetes treatment, a unique approach not commonly found in existing literature.
References
Abdel-Rahman, R. F., Ezzat, S. M., Ogaly, H. A., Abd-Elsalam, R. M., Hessin, A. F., Fekry, M. I., Mansour, D. F., & Mohamed, S. O. (2020). Ficus deltoidea extract down-regulates protein tyrosine phosphatase 1B expression in a rat model of type 2 diabetes mellitus: a new insight into its antidiabetic mechanism. Journal of Nutritional Science, 9, e2. https://doi.org/10.1017/jns.2019.40
Alam, S., Sarker, Md. M. R., Sultana, T. N., Chowdhury, Md. N. R., Rashid, M. A., Chaity, N. I., Zhao, C., Xiao, J., Hafez, E. S. E., Khan, S. A., & Mohamed, I. N. (2022). Antidiabetic Phytochemicals From Medicinal Plants: Prospective Candidates for New Drug Discovery and Development [Review of Antidiabetic Phytochemicals From Medicinal Plants: Prospective Candidates for New Drug Discovery and Development]. Frontiers in Endocrinology, 13. https://doi.org/10.3389/fendo.2022.800714
Amissah, J. N., Opoku-Agyemang, F., Asem, F. E., Osei‐Safo, D., & Addae‐Mensah, I. (2024). Increasing the planting density of Cryptolepis sanguinolenta (Lindl.) Schlt increased root biomass and cryptolepine yield. Heliyon, 10(10). https://doi.org/10.1016/j.heliyon.2024.e30932
Ansari, J. A., Ali, S., & Ansari, M. A. (2011). A brief focus on hepatoprotective leads from herbal origin. International Journal of Pharmacology, 7(2), 212–216. https://doi.org/10.3923/ijp.2011.212.216
Archana, V., Thomas, N. N., Lakshmi, S., Rauf, A. A., & Edwin, B. T. (2020). Pharmaceutical properties of Oldenlandia corymbosa Linn. Materials Today Proceedings, 41, 698. https://doi.org/10.1016/j.matpr.2020.05.585
Azizah, N. S., Irawan, B., Kusmoro, J., Safriansyah, W., Farabi, K., Oktavia, D., Doni, F., & Miranti, M. (2023). Sweet Basil (Ocimum basilicum L.)―A Review of Its Botany, Phytochemistry, Pharmacological Activities, and Biotechnological Development. Plants, 12(24), 4148. https://doi.org/10.3390/plants12244148
Bączek, K., Kosakowska, O., Gniewosz, M., Gientka, I., & Węglarz, Z. (2019). Sweet Basil (Ocimum basilicum L.) Productivity and Raw Material Quality from Organic Cultivation. Agronomy, 9(6), 279. https://doi.org/10.3390/agronomy9060279
Bhattacharya, S., Gupta, N., Flekalová, A., Gordillo-Alarcón, S., Espinel-Jara, V., & Fernández-Cusimamani, E. (2024). Exploring Folklore Ecuadorian Medicinal Plants and Their Bioactive Components Focusing on Antidiabetic Potential: An Overview. Plants, 13(11), 1436. https://doi.org/10.3390/plants13111436
Caser, M., Chitarra, W., D’Angiolillo, F., Perrone, I., Demasi, S., Lovisolo, C., Pistelli, L., Pistelli, L., & Scariot, V. (2018). Drought stress adaptation modulates plant secondary metabolite production in Salvia dolomitica Codd. Industrial Crops and Products, 129, 85. https://doi.org/10.1016/j.indcrop.2018.11.068
Chen, H., Shang, X., Yuan, H., Niu, Q., Chen, J., Luo, S., Li, W., & Li, X. (2022). Total flavonoids of Oldenlandia diffusa (Willd.) Roxb. suppresses the growth of hepatocellular carcinoma through endoplasmic reticulum stress-mediated autophagy and apoptosis. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.1019670
Divekar, P. A., Srinivasa, N., Divekar, B. A., Kumar, R., Gowda, G. B., Ray, A., Singh, A. K., Rani, V., Singh, V., Singh, A. K., Kumar, A., Singh, R. P., Meena, R. S., & Behera, T. K. (2022). Plant Secondary Metabolites as Defense Tools against Herbivores for Sustainable Crop Protection [Review of Plant Secondary Metabolites as Defense Tools against Herbivores for Sustainable Crop Protection]. International Journal of Molecular Sciences, 23(5), 2690. https://doi.org/10.3390/ijms23052690
Domingo‐Fernándéz, D., Gadiya, Y., Mubeen, S., Bollerman, T. J., Healy, M. D., Chanana, S., Sadovsky, R. G., Healey, D., & Colluru, V. (2023). Modern drug discovery using ethnobotany: A large-scale cross-cultural analysis of traditional medicine reveals common therapeutic uses. iScience, 26(9), 107729. https://doi.org/10.1016/j.isci.2023.107729
Essa, M. M., Vijayan, R. K., Castellano-Gonzalez, G., Braidy, N., & Guillemin, G. J. (2012). Neuroprotective effect of natural products against Alzheimer's disease. Neurochemical Research, 37(9), 1829–1842. https://doi.org/10.1007/s11064-012-0799-9
Elwon, C. A. M., Shah, M. D., & Iqbal, M. (2020). Hypoglycemic and hypolipidemic effects of Oldenlandia corymbosa against alloxan induced diabetes mellitus in rats. International Journal of Pharmacy and Pharmaceutical Sciences, 12(10), 34–40. https://doi.org/10.22159/ijpps.2020v12i10.38951
Ezema, C. A., Aguchem, R. N., Aham, E. C., Ezeorba, W. F. C., Okagu, I. U., & Ezeorba, T. P. C. (2023). Salvia africana-lutea L.: a review of ethnobotany, phytochemistry, pharmacology applications and future prospects [Review of Salvia africana-lutea L.: a review of ethnobotany, phytochemistry, pharmacology applications and future prospects]. Advances in Traditional Medicine, 24(3), 703. Springer Nature. https://doi.org/10.1007/s13596-023-00726-x
Florentín, M. N., Fader, A., & González, A. M. (2016). Morpho-anatomical and morphometric studies of the floral structures of the distylous Oldenlandia salzmannii (Rubiaceae). Acta Botanica Brasilica, 30(4), 585. https://doi.org/10.1590/0102-33062016abb0247
Guo, X., Wang, R., Simmons, M. P., But, P. P., & Yu, J. (2013). Phylogeny of the Asian Hedyotis–Oldenlandia complex (Spermacoceae, Rubiaceae): Evidence for high levels of polyphyly and the parallel evolution of diplophragmous capsules. Molecular Phylogenetics and Evolution, 67(1), 110. https://doi.org/10.1016/j.ympev.2013.01.006
Heinrich, M., Jalil, B., Abdel‐Tawab, M., Echeverría, J., Kulić, Ž., McGaw, L. J., Pezzuto, J. M., Potterat, O., & Wang, J.-B. (2022). Best Practice in the chemical characterisation of extracts used in pharmacological and toxicological research—The ConPhyMP—Guidelines12. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.953205
Huang, J. (1981). Neue Iridoide aus Oldenlandia Diffusa ROXB. Archiv Der Pharmazie, 314(10), 831. https://doi.org/10.1002/ardp.19813141004
Jørgensen, U., Jensen, S. K., Ambye‐Jensen, M., Delaby, I., Beaumont, R. A., Brocard, V., Lemauviel‐Lavenant, S., Plantureux, S., Vertès, F., & Peyraud, J.-L. J.-L. (2022). Coupling the benefits of grassland crops and green biorefining to produce protein, products and services for the green transition. Research Portal Denmark, 83. https://local.forskningsportal.dk/local/dki-cgi/ws/cris-link
Julca, I., Mutwil‐Anderwald, D., Manoj, V., Khan, Z., Lai, S. K., Yang, L. K., Beh, I. T., Dziekan, J. M., Lim, Y. P., Lim, S. K., Low, Y. W., Lam, Y. I., Tjia, S., Mu, Y., Tan, Q. W., Nuc, P., Choo, L. M., Khew, G., Loo, S., … Mutwil, M. (2023). Genomic, transcriptomic, and metabolomic analysis of Oldenlandia corymbosa reveals the biosynthesis and mode of action of anti‐cancer metabolites. Journal of Integrative Plant Biology, 65(6), 1442. https://doi.org/10.1111/jipb.13469
Katrolia, A., Pal, V. K., Shukla, V. K., & Singh, R. (2023). Exploring the Therapeutic Potential of Herbal Plants in Managing Blood Sugar Levels: A Comprehensive Evaluation. Pharmacognosy Research, 16(1), 10. https://doi.org/10.5530/pres.16.1.2
Kellogg, J. J., Paine, M. F., McCune, J. S., Oberlies, N. H., & Cech, N. B. (2019). Selection and characterization of botanical natural products for research studies: a NaPDI center recommended approach [Review of Selection and characterization of botanical natural products for research studies: a NaPDI center recommended approach]. Natural Product Reports, 36(8), 1196.. https://doi.org/10.1039/c8np00065d
Kim, C., & Choi, K. (2021). Potential Roles of Iridoid Glycosides and Their Underlying Mechanisms against Diverse Cancer Growth and Metastasis: Do They Have an Inhibitory Effect on Cancer Progression? [Review of Potential Roles of Iridoid Glycosides and Their Underlying Mechanisms against Diverse Cancer Growth and Metastasis: Do They Have an Inhibitory Effect on Cancer Progression?]. Nutrients, 13(9), 2974. https://doi.org/10.3390/nu13092974
Liang, Z., He, M., Fong, W., Jiang, Z., & Zhao, Z. (2008). A comparable, chemical and pharmacological analysis of the traditional Chinese medicinal herbs Oldenlandia diffusa and O. corymbosa and a new valuation of their biological potential. Phytomedicine, 15(4), 259. https://doi.org/10.1016/j.phymed.2008.01.003
Lok, B. M., Yee, P., Tunku, M., Rahman, A. H. A., Subramaniam, P., Ramachandran, V., Shah, H., Hamid, A., Kandavello, G., Azmi, N. H. M., Hafizah, N., Nur, I., Nabila, S., Buhari, I., Priya, S. L. S., Amrina, M. A., Thilakavathy, K., Mazlyfarin, M., Farhayu, O. N., … Idris, S. (2024). Abstracts from the 2nd International Conference of Science, Technology, Education, and Management (InSTEM 2023). BMC Proceedings, 18. https://doi.org/10.1186/s12919-024-00294-1
Magliano, D., & Boyko E. J. (2025). IDF diabetes atlas 11th edition. International Diabetes Federation. https://diabetesatlas.org/resources/idf-diabetes-atlas-2025/
Mahajan, M., Kuiry, R., & Pal, P. K. (2020). Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. Journal of Applied Research on Medicinal and Aromatic Plants, 18, 100255. https://doi.org/10.1016/j.jarmap.2020.100255
Mahankali, S., Kalava, J., Garapati, Y., Domathoti, B., Maddumala, V. R., & Sundramurty, V. P. (2022). A Treatment to Cure Diabetes Using Plant-Based Drug Discovery. Evidence-Based Complementary and Alternative Medicine, 1. https://doi.org/10.1155/2022/8621665
Marcelino, S., Hamdane, S., Gaspar, P. D., & Paço, A. (2023). Sustainable Agricultural Practices for the Production of Medicinal and Aromatic Plants: Evidence and Recommendations. Sustainability, 15(19), 14095. https://doi.org/10.3390/su151914095
Marchev, A. S., Vasileva, L. V., Amirova, K. M., Savova, M. S., Balcheva-Sivenova, Z. P., & Georgiev, M. I. (2021). Metabolomics and health: from nutritional crops and plant-based pharmaceuticals to profiling of human biofluids [Review of Metabolomics and health: from nutritional crops and plant-based pharmaceuticals to profiling of human biofluids]. Cellular and Molecular Life Sciences, 78. https://doi.org/10.1007/s00018-021-03918-3
Muema, F. W., Nanjala, C., Oulo, M. A., & Wangchuk, P. (2023). Phytochemical Content and Antidiabetic Properties of Most Commonly Used Antidiabetic Medicinal Plants of Kenya [Review of Phytochemical Content and Antidiabetic Properties of Most Commonly Used Antidiabetic Medicinal Plants of Kenya]. Molecules, 28(20), 7202.. https://doi.org/10.3390/molecules28207202
Munguía‐Rosas, M. A. (2021). Artificial selection optimizes clonality in chaya (Cnidoscolus aconitifolius). Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-00592-0
Neupane, S., Dessein, S., & Motley, T. J. (2009). The Hedyotis–Oldenlandia–Kohautia Complex (Rubiaceae) In Nepal: A Study of Fruit, Seed and Pollen Characters and Their Taxonomic Significance. Edinburgh Journal of Botany, 66(3), 371. https://doi.org/10.1017/s0960428609990035
Neupane, S., Dessein, S., Wikström, N., Lewis, P. O., Long, C., Bremer, B., & Motley, T. J. (2015). The Hedyotis-Oldenlandia complex (Rubiaceae: Spermacoceae) in Asia and the Pacific: Phylogeny revisited with new generic delimitations. Taxon, 64(2), 299. https://doi.org/10.12705/642.8
Omale, S., Amagon, K. I., Johnson, T. O., Bremner, S., & Gould, G. W. (2023). A systematic analysis of anti-diabetic medicinal plants from cells to clinical trials [Review of A systematic analysis of anti-diabetic medicinal plants from cells to clinical trials]. PeerJ, 11. https://doi.org/10.7717/peerj.14639
Osewa, S. O., Alamu, O., Adetiloye, I. S., Olubiyi, M. R., & Abidogun, E. A. (2013). Use of some Neglected and Underutilized Plant Species among Rural Dwellers in Akinyele Local Government Area of Oyo State. Greener Journal of Agricultural Sciences, 3(12), 817. https://doi.org/10.15580/gjas.2013.3.060913821
Pelkonen, O., Xu, Q., & Fan, T.-P. (2014). Why is Research on Herbal Medicinal Products Important and How Can We Improve Its Quality? Journal of Traditional and Complementary Medicine, 4(1), 1. https://doi.org/10.4103/2225-4110.124323
Ripoche, A., Barkaoui, K., Allouch, N., Christina, M., Heuclin, B., Rafenomanjato, A., Moonen, A., Autfray, P., & Marnotte, P. (2024). Do rotation and fertilization practices shape weed communities and affect rice yield in low input rainfed agroecosystems in the Malagasy highlands? Agriculture Ecosystems & Environment, 373. https://doi.org/10.1016/j.agee.2024.109136
Rojas‐Sandoval, J. (2022). Catharanthus roseus (Madagascar periwinkle) [Data set]. In CABI Compendium. CAB International Publishing. https://doi.org/10.1079/cabicompendium.16884
Roy, D. N., Ferdiousi, N., Khatun, T., & Moral, Md. R. A. (2016). Phytochemical screening, nutritional profile and anti-diabetic effect of ethanolic leaf extract of Cnidoscolus aconitifolius in streptozotocin induce diabetic mice. International Journal of Basic & Clinical Pharmacology, 5(5), 2244–2250. https://doi.org/10.18203/2319-2003.ijbcp20163269.
Salaudeen, M. T., Daniya, E., Olaniyi, O. M., Folorunso, T. A., Bala, J. A., Abdullahi, I. M., Nuhu, B. K., Adedigba, A. P., Oluwole, B. I., Bankole, A. O., & Macarthy, O. M. (2022). Phytosociological survey of weeds in irrigated maize fields in a Southern Guinea Savanna of Nigeria. Frontiers in Agronomy, 4. https://doi.org/10.3389/fagro.2022.985067
Sheikh, Z. N., Sharma, N., Sharma, V., Bakshi, P., Raina, S., & Ataya, F. S. (2024). Comparative Analysis of Bioactive Compounds and Health Benefits of Wild and Cultivated Ficus carica Accessions from the Northern Himalayas. Research Square. https://doi.org/10.21203/rs.3.rs-5334005/v1
Sindhu, R. K., Saini, B., Kaur, P., & Batiha, G. E. (2021). The Role of Ethnomedicinal Plants for Treatment and Management of Diabetes Mellitus: An Updated Review. Journal of University of Shanghai for Science and Technology, 23(7), 1014. https://doi.org/10.51201/jusst/21/07213
Smithies, B. J., Huang, Y.-H., Jackson, M. A., Anderson, M. A., & Craik, D. J. (2020). Circular Permutation of the Native Enzyme-Mediated Cyclization Position in Cyclotides. ACS Chemical Biology, 15(4), 962–969. https://doi.org/10.1021/acschembio.0c00052
Vanhaelewyn, L., Straeten, D. V. D., Coninck, B. D., & Vandenbussche, F. (2020). Ultraviolet Radiation From a Plant Perspective: The Plant-Microorganism Context [Review of Ultraviolet Radiation From a Plant Perspective: The Plant-Microorganism Context]. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.597642
Wang, H., Chen, Y., Wang, L., Liu, Q., Yang, S., & Wang, C.-Q. (2023). Advancing herbal medicine: enhancing product quality and safety through robust quality control practices [Review of Advancing herbal medicine: enhancing product quality and safety through robust quality control practices]. Frontiers in Pharmacology, 14. https://doi.org/10.3389/fphar.2023.1265178
Wang, Z., Wang, T., Hu, J., Jiao, H., Jin, Y., Sun, J., Nan, T., Zhao, Y., Liu, Y., Huang, L., & Yuan, Y. (2024, March 6). Comparisons of wild and cultivated American ginseng (Panax quinquefolius L.) genomes provide insights into changes in root growth and metabolism during domestication. Plant Biotechnology Journal, 22(7). https://doi.org/10.1111/pbi.14316
Wang, Z., Zhang, Y., Zhang, Q., Ao, Q., Luo, C., Wang, B., Bai, C., Ge, X., Wang, Y., Wang, J., Ying, Q., Yu, H., & Gu, X. (2022). On the Core Prescriptions and Their Mechanisms of Traditional Chinese Medicine in Hepatitis B, Liver Cirrhosis, and Liver Cancer Treatment. Journal of Oncology, (1). https://doi.org/10.1155/2022/5300523
Xie, F., Wang, H., Cao, Q., Chen, Q., & Lin, F. (2022). The effects of Oldenlandia diffusa water extract on glucose metabolism and inflammation level in rats with streptozotocin-induced gestational diabetes mellitus. Quality Assurance and Safety of Crops & Foods, 14(1), 24. https://doi.org/10.15586/qas.v14i1.970
Yahaya, N., Dom, N. S. M., Adam, Z., & Hamid, M. (2018). Insulinotropic Activity of Standardized Methanolic Extracts of Ficus deltoidea from Seven Varieties. Evidence-Based Complementary and Alternative Medicine, 1. https://doi.org/10.1155/2018/3769874
Yulizar, Y., Latifah, I., Bakri, R., & Apriandanu, D. O. B. (2018). Plants extract mediated synthesis of copper (II) oxide nanoparticles using Oldenlandia corymbosa L. leaf. AIP Conference Proceedings, 20097. https://doi.org/10.1063/1.5064094
Zhao, C., Wei, M., Zheng, Y., Tao, W., Lv, Q., Wang, Q., Wang, S., & Chen, Y. (2021). The Analyses of Chemical Components From Oldenlandia hedyotidea (DC.) Hand.-Mazz and Anticancer Effects in vitro. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.624296
Zhang, L.-Y., Zhang, J.-G., Yang, X., Zhang, C.-W., & Hu, Z.-M. (2020). Targeting tumor immunosuppressive microenvironment for the prevention of hepatic cancer: Applications of traditional chinese medicines in targeted delivery. Current Topics in Medicinal Chemistry, 20(30), 2789–2800. https://doi.org/10.2174/1568026620666200908165218
Zhang, Y., Hu, H., & Jia-bo, L. (2020). Diffusosides C and D, two new iridoid glucosides from Oldenlandia diffusa. Natural Product Research, 36(9), 2300. https://doi.org/10.1080/14786419.2020.1830397
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2026 Nor Isnaeni Dwi Arista, Yochidamai Akhsanitaqwim

This work is licensed under a Creative Commons Attribution 4.0 International License.















