Smart biogas: An independent energy system based on organic waste integrated with IoT

Authors

  • Asminar Department of Electrical Engineering, Faculty of Engineering, Halu Oleo University, Kendari, Southeast Sulawesi 93231, Indonesia
  • Abdul Djohar Department of Electrical Engineering, Faculty of Engineering, Halu Oleo University, Kendari, Southeast Sulawesi 93231, Indonesia
  • Syahran Rifaldi Department of Electrical Engineering, Faculty of Engineering, Halu Oleo University, Kendari, Southeast Sulawesi 93231, Indonesia
  • Rifki Department of Electrical Engineering, Faculty of Engineering, Halu Oleo University, Kendari, Southeast Sulawesi 93231, Indonesia
  • Muhammad Adam Raswadi Department of Electrical Engineering, Faculty of Engineering, Halu Oleo University, Kendari, Southeast Sulawesi 93231, Indonesia
  • Arya Sadewa Department of Electrical Engineering, Faculty of Engineering, Halu Oleo University, Kendari, Southeast Sulawesi 93231, Indonesia

DOI:

https://doi.org/10.61511/aes.v3i2.2026.2375

Keywords:

smart biogas, biogas efficiency, communal energy

Abstract

Background: Indonesia faces substantial challenges in waste management, as most organic waste remains untreated. A similar situation occurs in Kendari City, which generates approximately 253 tons of waste per day, the majority of which consists of organic materials. This condition reflects the untapped potential of renewable energy derived from organic waste, thereby necessitating the development of an effective system to address these issues comprehensively. Methods: This study employed a descriptive research method with a case study approach. The data analyzed encompassed the volume and composition of organic waste in Kendari City. The findings served as the foundation for designing a Smart Biogas system integrated with the Internet of Things (IoT). The system incorporates sensors to monitor temperature, pressure, and methane concentration in real time and is connected to an application that enables remote monitoring and control. Findings: The study revealed that the potential biogas production from organic waste in Kendari City could reach approximately 5,650 m³ per day. This volume demonstrates significant potential to meet a portion of the local energy demand. By adopting a communal-based system design, the utilization of biogas can be optimized, particularly to support energy needs at the sub-district level. Conclusion: The results indicate that the implementation of the Smart Biogas system can not only reduce the volume of organic waste but also provide a sustainable energy independence solution. Novelty/Originality of this article: The novelty of this research lies in the development of a Smart Biogas system integrated with IoT technology, specifically designed for communal-scale applications. The system enables real-time monitoring of the fermentation process through temperature, pressure, and methane sensors, with remote access facilitated by an integrated application. This approach ensures that organic waste is not only effectively managed but also converted into renewable energy, thereby supporting local energy independence.

References

Agustin, A. W., Sudarti, S., & Yushardi, Y. (2023). Potensi Pemanfaatan Biogas Dari Sampah Organik Sebagai Sumber Energi Terbarukan. INSOLOGI: Jurnal Sains dan Teknologi, 2(6), 1109-1116. https://doi.org/10.55123/insologi.v2i6.2841

Aini, N. U., Pujiyati, S., Hestirianoto, T., Rahmat, A., Santosa, J., & N, N. K. (2025). Design of Gas Pressure and pH Pressure Monitoring and Control System using ESP32 on IoT-Based Biogas Digester. The Journal of Academic Science, 2(5), 1334–1335. https://doi.org/10.59613/eyx1v879

Al-Najjar, H., Pfeifer, C., Al Afif, R., & El-Khozondar, H. J. (2022). Performance Evaluation of a Hybrid Grid-Connected Photovoltaic Biogas-Generator Power System. Energies, 15(9). https://doi.org/10.3390/en15093151

Al-Talib, A. A. M., Wen Yang, I. H., Mohd Tahir, N. I., Abu Bakar, A. H. B., & Afifi Bin Zainal, N. M. (2024). Gas Detection for Biogas System Using Internet-of-Things(IoT). Proceedings of International Conference on Artificial Life and Robotics, 782–788. https://doi.org/10.5954/icarob.2024.os25-6

Alengebawy, A., Ran, Y., Osman, A. I., Jin, K., Samer, M., & Ai, P. (2024). Anaerobic digestion of agricultural waste for biogas production and sustainable bioenergy recovery: a review. Environmental Chemistry Letters, 22(6), 2641–2668. https://doi.org/10.1007/s10311-024-01789-1

Andrade, F. P. H. de, Félix, J. H. da S., Andrade, F. H. L., Paz, D. A. C., Alcócer, J. C. A., & Pinto, O. R. de O. (2022). Monitoring of biodigesters through a computerized system integrated to IoT platform. International Journal of Advanced Engineering Research and Science, 9(2), 270–278. https://doi.org/10.22161/ijaers.92.31

Anisa, P., Ahmad, S. N., Welendo, ,La, & Nur Rakhmad.A, L. M. (2023). Analisis Karakteristik Dan Komposisi Sampah Rumah Tangga Di Kecamatan Kendari Barat Kota Kendari. STABILITA || Jurnal Ilmiah Teknik Sipil, 10(3), 100. https://doi.org/10.55679/jts.v10i3.31245

Bernardi, B., Benalia, S., Zema, D. A., Tamburino, V., Zimbalatti, G., Vito, F., & Rc, R. C. (2017). An automated medium scale prototype for anaerobic co-digestion of olive mill wastewater. Information Processing in Agriculture, 4(4), 316–320. https://doi.org/10.1016/j.inpa.2017.06.004

de Souza, J., de Souza, S. N. M., Bassegio, D., Secco, D., & Nadaletti, W. C. (2023). Performance of Different Engines in Biogas-Based Distributed Electricity Generation Systems. Engenharia Agricola, 43(5). https://doi.org/10.1590/1809-4430-Eng.Agric.v43n5e20230120/2023

Elwood, M. (2021). The scientific basis for occupational exposure limits for hydrogen sulphide—a critical commentary. International Journal of Environmental Research and Public Health, 18(6), 2866. https://doi.org/10.3390/ijerph18062866

Gede, I., Negara, A., Anakottapary, S., Bagus, I., Widiantara, G., Putu, L., Midiani, I., Gde, T., Nindhia, T., Ngurah, G., & Santhiarsa, N. (2024). Integrated Microcontroller MQ Sensors for Monitoring Biogas: Advancements in Methane and Hydrogen Sulfide Detection. Jurnal Teknosains, 13(2), 140–151. https://doi.org/10.22146/teknosains.91936

Harun, E. H., Ilham, Z., Ilham, J., & Yusuf, T. I. (2025). The Potential of Biogas from Organic Waste in the Talumelito Landfill as a Source of Renewable Energy. Jambura Journal of Electrical and Electronics Engineering, 7(1), 118–124. https://doi.org/10.37905/jjeee.v7i1.27968

Hasan, M. M., Mofijur, M., Uddin, M. N., Kabir, Z., Badruddin, I. A., & Khan, T. Y. (2024). Insights into anaerobic digestion of microalgal biomass for enhanced energy recovery. Frontiers in Energy Research, 12, 1355686. https://doi.org/10.3389/fenrg.2024.1355686

Hida, S. N., Prabowo, S., Kirom, M., & Suhendi, A. (2023). Monitoring System of Biogas Production Volume and Digester Pressure Control. In Proc. 5th Int. Conf. Appl. Sci. Technol. Eng. Sci (pp. 493-498). https://doi.org/10.5220/0011816500003575

Huang, X. (2024). The promotion of anaerobic digestion technology upgrades in waste stream treatment plants for circular economy in the context of “dual carbon”: Global status, development trend, and future challenges. Water, 16(24), 3718. https://doi.org/10.3390/w16243718

Issahaku, M., Derkyi, N. S. A., & Kemausuor, F. (2025). An assessment of a solar PV-powered IoT monitoring system for small-scale biogas digesters. Discover Internet of Things, 5(1), 1-16. https://doi.org/10.1007/s43926-025-00223-4

Junus, M., Rahman, D., & Shodiq, R. F. (2025). Micro-Controller Based Biogas Production Monitoring System. Indonesian Journal of Electrical and Electronics Engineering (INAJEEE), 8(2), 69–75. https://doi.org/10.26740/inajeee.v8n2

Kalamaras, S. D., Tsitsimpikou, M. A., Tzenos, C. A., Lithourgidis, A. A., Pitsikoglou, D. S., & Kotsopoulos, T. A. (2025). A Low-Cost IoT System Based on the ESP32 Microcontroller for Efficient Monitoring of a Pilot Anaerobic Biogas Reactor. Applied Sciences (Switzerland), 15(1). https://doi.org/10.3390/app15010034

Lhamo, T., Gocha, S., Wangchuk, K., Dorji, T., & Wangchuk, Y. (2021). IOT Based Biogas Monitoring System using Node MCU ESP32S. Zorig Melong | A Technical Journal of Science, Engineering and Technology, 5(1), 61–67. https://doi.org/10.17102/zmv5.i1.012

Li, A., Pandey, A., & Pandey, P. (2025). Application of IoT in Monitoring Greenhouse Gas Emissions in Anaerobic Reactors. Energies, 18(23), 6191. https://doi.org/10.3390/en18236191

Logan, M., Safi, M., Lens, P., & Visvanathan, C. (2019). Investigating the performance of internet of things based anaerobic digestion of food waste. Process Safety and Environmental Protection, 127, 277–287. https://doi.org/10.1016/j.psep.2019.05.025

Mizger-Ortega, J., Vanegas-Chamorro, M., & Quintero, M. C. (2022). Anaerobic Digestion in Biogas Production from Organic Matter: A Bibliometric Analysis from 2000 to 2021. International Journal of Energy Economics and Policy, 12(5), 505–514. https://doi.org/10.32479/ijeep.13367

Nagahage, I. S. P., Nagahage, E. A. A. D., & Fujino, T. (2021). Assessment of the applicability of a low-cost sensor–based methane monitoring system for continuous multi-channel sampling. Environmental Monitoring and Assessment, 193(8), 509. https://doi.org/10.1007/s10661-021-09290-w

Ojetokun, O. T., Bada, B. S., & Taiwo, A. M. (2025). Co-Digestion of Cow Dung, Poultry Manure, Palm Oil Mill Effluent and Water for Biogas Production: Performance Evaluation of Fixed Dome and Floating Drum Digesters. Journal of Applied Sciences and Environmental Management, 29(3), 945–952. https://doi.org/10.4314/jasem.v29i3.33

Radu, T., Smedley, V., Yadav, D., Blanchard, R., Rahaman, S. A., Salam, A., & Visvanathan, C. (2022). The Design, Development and Assessment of a Novel De-centralised IoT-Based Remote Monitoring of a Small-Scale Anaerobic Digester Network. Journal of Energy and Power Technology, 04(04), 1–17. https://doi.org/10.21926/jept.2204039

Roldán-Porta, C., Roldán-Blay, C., Dasi-Crespo, D., & Escriva-Escriva, G. (2023). Optimising a biogas and photovoltaic hybrid system for sustainable power supply in rural areas. Applied Sciences, 13(4), 2155. https://doi.org/10.3390/app13042155

Saputra, O., Khalil, F. I., & Widhiantari, I. A. (2024). Rancang Bangun Sistem Kontrol dan Monitoring Tekanan Gas Pada Biodigester Berbasis IoT: Analisis Waktu dan Stabilitas Koneksi ESP32 dan ESP32-S3 (Lilygo T Display S3). Jurnal Sains Teknologi & Lingkungan, 10(4), 608–616. https://doi.org/10.29303/jstl.v10i4.706

Sharma, A. K., Sahoo, P. K., Mukherjee, M., & Patel, A. (2022). Assessment of Sustainable Biogas Production from Co-Digestion of Jatropha De-Oiled Cake and Cattle Dung Using Floating Drum Type Digester under Psychrophilic and Mesophilic Conditions. Clean Technologies, 4(2), 529–541. https://doi.org/10.3390/cleantechnol4020032

Song, Y. J., Oh, K. S., Lee, B., Pak, D. W., Cha, J. H., & Park, J. G. (2021). Characteristics of biogas production from organic wastes mixed at optimal ratios in an anaerobic co-digestion reactor. Energies, 14(20), 6812. https://doi.org/10.3390/en14206812

Sulistiyanto, S., & Mawardi, I. (2024). Portable Smart Biogas Digester Using Pressure Sensor and Safety Valve Based on Internet of Things. Journal of Electrical Engineering and Computer (JEECOM), 6(1), 243–251. https://doi.org/10.33650/jeecom.v6i1.8540

Syaichurrozi, I., Suhirman, S., & Hidayat, T. (2021). Effect of Substrate/Water Ratio on Biogas Production from the Mixture Substrate of Rice Straw and Salvinia molesta. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 12(2), 45-55. https://doi.org/10.21771/jrtppi.2021.v12.no2.p45-55

Uthman, F. (2021). Modification and Performance Evaluation of a Floating Drum Biogas Digester. LAUTECH Journal of Civil and Environmental Studies, 7(1). https://doi.org/10.36108/laujoces/1202.70.0131

Yao, L., Wang, Y., Li, R., Fu, L., Liu, Z., & Gao, X. (2024). Effects of Total Solid Content on Anaerobic Fermentation Performance and Biogas Productivity of Tail Vegetables. Fermentation, 10(8),437. https://doi.org/10.3990/fermentation10080437

Downloads

Published

2025-12-16

How to Cite

Asminar, Djohar, A., Rifaldi, S., Rifki, Raswadi, M. A., & Sadewa, A. (2025). Smart biogas: An independent energy system based on organic waste integrated with IoT. Applied Environmental Science, 3(2), 112–130. https://doi.org/10.61511/aes.v3i2.2026.2375

Issue

Section

Articles

Citation Check