Spatiotemporal dynamics of vegetation density in moramo district protected forest: A remote sensing approach

Authors

  • La Gandri Department of Environmental Science, Faculty of Forestry and Environmental Science, Universitas Halu Oleo, Kendari, Southeast Sulawesi 93231 , Indonesia
  • Muhammad Fatahuddin Department of Forestry, Faculty of Forestry and Environmental Science, Universitas Halu Oleo, Kendari, Southeast Sulawesi 93231 , Indonesia
  • Sahindomi Bana Department of Forestry, Faculty of Forestry and Environmental Science, Universitas Halu Oleo, Kendari, Southeast Sulawesi 93231 , Indonesia
  • Umar Ode Hasani Department of Forestry, Faculty of Forestry and Environmental Science, Universitas Halu Oleo, Kendari, Southeast Sulawesi 93231 , Indonesia
  • Abdul Sakti Department of Forestry, Faculty of Forestry and Environmental Science, Universitas Halu Oleo, Kendari, Southeast Sulawesi 93231 , Indonesia
  • Dewi Fitriani Department of Forestry, Faculty of Forestry and Environmental Science, Universitas Halu Oleo, Kendari, Southeast Sulawesi 93231 , Indonesia
  • La De Ahmaliun Department of Forestry, Faculty of Forestry and Environmental Science, Universitas Halu Oleo, Kendari, Southeast Sulawesi 93231 , Indonesia
  • Muhsimin Department of Environmental Science, Faculty of Forestry and Environmental Science, Universitas Halu Oleo, Kendari, Southeast Sulawesi 93231 , Indonesia
  • Vivi Fitriani Department of Soil Science, Faculty of Agriculture, Universitas Jember, Jember, East Java 68121, Indonesia

DOI:

https://doi.org/10.61511/aes.v3i1.2025.1812

Keywords:

Moramo District, protected forest, remote sensing, vegetation density

Abstract

Background: Protected forests in the Moramo District play a critical role in maintaining ecosystem balance, but they are increasingly threatened by human activities such as illegal logging and land use change. Vegetation density shifts can disrupt ecosystem functions, particularly the hydrological cycle. This study aims to analyze spatial and temporal changes in vegetation density in the Moramo District Protected Forest using remote sensing. Methods: To detect vegetation density changes, the NDVI (Normalized Difference Vegetation Index) algorithm was employed using satellite imagery from Landsat OLI 8 (2013 and 2018) and Landsat OLI 9 (2023), processed with GIS software. NDVI values range from -1 to 1, allowing for vegetation condition assessment based on spectral reflectance. Findings: Results show a degradation trend in dense vegetation, with a decrease of 67.25 ha (2.86%) during 2013–2018 and 289.11 ha (12.31%) during 2018–2023. Conversely, moderately dense vegetation increased by 68.45 ha (2.91%) and 300.21 ha (12.78%) over the same periods, indicating signs of vegetation regeneration. Conclusion: Despite some vegetation recovery, forest ecosystems continue to face high pressure. More adaptive conservation strategies supported by spatial monitoring are needed to reduce degradation and support long-term sustainability. Novelty/Originality of this article: This study uniquely integrates a multi-temporal NDVI-based approach with socio-ecological analysis and GIS tools to monitor vegetation dynamics. It offers valuable insights for adaptive forest management in the Moramo District Protected Forest, an area previously lacking detailed environmental change analysis.

References

ASEAN Centre for Biodiversity. (2023). ASEAN Biodiversity Outlook 3. Philippines. https://abo3.aseanbiodiversity.org/#

Akhmaddhian, S. (2016). Penegakan hukum lingkungan dan pengaruhnya terhadap pertumbuhan ekonomi di Indonesia (Studi kebakaran hutan tahun 2015). UNIFIKASI: Jurnal Ilmu Hukum, 3(1), 1–35. https://doi.org/10.25134/unifikasi.v3i1.404

Arba, S., Sudiarto, & Yuniasari, R. (2023). Perlindungan hutan dan fungsinya bagi kehidupan manusia dan lingkungan alam. Jurnal Kompilasi Hukum, 8(2), 127–142. https://doi.org/10.29303/jkh.v8i2.144

Arkham, I.F.A.A., Nugraha, AL, & Awalludin, M. (2023). Analisis Ruang Terbuka Hijau Di Kampus Universitas Diponegoro Menggunakan Sistem Informasi Geografis. Jurnal Geodesi Undip, 12 (3), 330-340. Diambil dari https://ejournal3.undip.ac.id/index.php/geodesi/article/view/39375

Baccini, A., Walker, W., Carvalho, L., Farina, M., Sulla-Menashe, D., & Houghton, R. A. (2017). Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science, 358(6360), 230–234. https://doi.org/10.1126/sains.aam5962

Betts, M. G., Wolf, C., Pfeifer, M., Leite, C. B., Rodriguez, V. A., Ribeiro, D. B., ... & Ewers, R. M. (2019). Extinction filters mediate the global effects of habitat fragmentation on animals. Science, 366(6470), 1236–1239. https://doi.org/10.1126/science.aax938

Bolan, S., Padhye, L. P., Jasemizad, T., Govarthanan, M., Karmegam, N., Wijesekara, H., ... & Bolan, N. (2024). Impacts of climate change on the fate of contaminants through extreme weather events. Science of the Total Environment, 909. https://doi.org/10.1016/j.scitotenv.2023.168388

Bonan, G. B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 1444–1449. https://doi.org/10.1126/science.1155121

Brockerhoff, E. G., Barbaro, L., Castagneyrol, B., Forrester, D. I., Gardiner, B., Olabarria, J. R. G., ... & Jactel, H. (2017). Forest biodiversity, ecosystem functioning, and the provision of ecosystem services. Biodiversity and Conservation, 26, 3005–3035. https://doi.org/10.1007/s10531-017-1453-2

Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B., & Lambin, E. (2004). Review article: Digital change detection methods in ecosystem monitoring. International Journal of Remote Sensing, 25(9), 1565–1596. https://doi.org/10.1080/0143116031000101675

Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A., & Hansen, M. C. (2018). Classifying drivers of global forest loss. Science, 361(6407), 1108–1111. https://doi.org/10.1126/science.aau3445

FAO. (2020). Global Forest Resources Assessment 2020. Food and Agriculture Organization of the United Nations. https://www.fao.org/forest-resources-assessment/2020

Fitriani, V., Gandri, L., Indriyani, L., & Bana, S. (2023). Analisis hubungan land surface temperature (LST) dan indeks kerapatan vegetasi (NDVI) DAS Wanggu, Sulawesi Tenggara. Jurnal Ilmu-Ilmu Kehutanan, 7(1), 49–57. https://doi.org/10.31258/jiik.7.1.49-57

Food and Agriculture Organization of the United Nations (FAO). (2022). Global forest resources assessment 2020: Main report. FAO Forestry Paper No. 184. https://openknowledge.fao.org/server/api/core/bitstreams/9f24d451-2e56-4ae2-8a4a-1bc511f5e60e/content

Forest Digest. (2025). The impact of deforestation on us: Deforestation is the main cause of the climate crisis. How does it affect us? Forest Digest. https://www.forestdigest.com/detail/2709/dampak-negatif-deforestasi

Forest Europe. (2024). State of Europe’s Forests 2024. Forest Europe. https://foresteurope.org/wp-content/uploads/2016/08/SoEF_2020.pdf

Forest Europe. (2025). Sustainable forest management: A dynamic concept of Sustainable Forest Management (SFM) in Europe. Forest Europe. https://foresteurope.org/workstreams/sustainable-forest-management/

Gandri, L., Indriyani, L., Bana, S., Ahmaliun, L. D., Alwi, L. O., & Fitriani, V. (2023). Analisis perubahan kerapatan vegetasi mangrove untuk perencanaan pengelolaan konservasi perairan berkelanjutan di Teluk Moramo. Jurnal Perencanaan Wilayah, 8(1), 107–115. https://doi.org/10.33772/jpw.v8i1.380

Garrity, D. (2012). Agroforestry and the future of global land use. In P. Nair & D. Garrity (Eds.), Agroforestry - The Future of Global Land Use (Advances in Agroforestry, Vol. 9, pp. 21–28). Springer. https://doi.org/10.1007/978-94-007-4676-3_6

Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., ... & Townshend, J. R. (2015). Habitat fragmentation and its lasting impact on Earth's ecosystems. Science Advances, 1(2), e1500052. https://doi.org/10.1126/sciadv.1500052

Hallaj, Z., Bijani, M., Karamidehkordi, E., Yousefpour, R., & Yousefzadeh, H. (2024). Forest land use change effects on biodiversity, ecosystem services and human well-being: A systematic analysis. Environmental and Sustainability Indicators, 23. https://doi.org/10.1016/j.indic.2024.100445

IPCC. (2023). Climate change 2023: Impacts, adaptation, and vulnerability. Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar6/wg2/

Jainuddin, N. (2023). Dampak deforestasi terhadap keanekaragaman hayati dan ekosistem. HUMANITIS: Jurnal Humaniora, Sosial dan Bisnis, 1(2), 131–140.

Locatelli, B., Pavageau, C., Pramova, E., & Di Gregorio, M. (2015). Integrating climate change mitigation and adaptation in agriculture and forestry: Opportunities and trade-offs. Wiley Interdisciplinary Reviews: Climate Change, 6(6), 585–598. https://doi.org/10.1002/wcc.357

Meyfroidt, P., Carlson, K. M., Fagan, M. E., Gutiérrez-Vélez, V. H., Macedo, M. N., Curran, L. M., ... & Robiglio, V. (2018). Multiple pathways of commodity crop expansion in tropical forest landscapes. Environmental Research Letters, 9(7), 074012. https://doi.org/10.1088/1748-9326/9/7/074012

Nawangwulan, N. H., Sudarsono, B., & Sasmito, B. (2013). Analisis pengaruh perubahan lahan pertanian terhadap hasil produksi tanaman pangan di Kabupaten Pati tahun 2001–2011. Jurnal Geodesi Undip, 2(2). https://doi.org/10.14710/jgundip.2013.2444

Pons, X., L. Pesquer, J. Cristóbal, O. González-Guerrero, (2014). Automatic and improved radiometric correction of Landsat imagery using reference values from MODIS surface reflectance images. International Journal of Applied Earth Observation and Geoinformation. Vol. 33, 243-254. https://doi.org/10.1016/j.jag.2014.06.002

Suyarso, M. D. Setiawati, I. H. Supriyadi, B. Prayudha. (2023). Chapter 5 - Climate change indicator, impact, adaptation, and innovation at the local level: learn from the peoples' experience of the coastal plain of Probolinggo, East Java, Indonesia. Climate Change, Community Response and Resilience. Volume 6 in Developments in Weather and Climate Science. https://doi.org/10.1016/B978-0-443-18707-0.00005-9

Trinufi, R. N., & Rahayu, S. (2020). Analisis perubahan kerapatan vegetasi dan bangunan di Kota Banda Aceh pasca bencana tsunami. Ruang, 6(1), 28–37. https://doi.org/10.14710/ruang.6.1.29-39

USGS. NDVI: The foundation of remote sensing phenology. U.S. Geological Survey. https://www.usgs.gov/special-topics/remote-sensing-phenology/science/ndvi-foundation-remote-sensing-phenology#overview

Wahyunto, & Dariah, A. (2014). Indonesian degraded peatland: Existing condition, its characteristics, and standardized definition to support one map policy movement. Jurnal Sumberdaya Lahan, 8(2), 81–93. https://doi.org/10.2018/jsdl.v8i2.6470

Wiguna, H. A., Nasihin, I., & Kosasih, D. (2019). Perubahan tutupan dan penggunaan lahan di DAS Cisanggarung Jawa Barat. Wanaraksa, 13(2), 1–8. https://doi.org/10.25134/wanaraksa.v13i02.4682

Wulandari, N. A. F. (2017). Analisis ketersediaan ruang terbuka hijau di Kota Serang tahun 2000–2015 [Thesis]. UIN Syarif Hidayatullah Jakarta: Fakultas Ilmu Tarbiyah dan Keguruan.

Zulkarnain, Halili, & Diara, L. (2015) Analisis spasial perubahan tutupan lahan pada wilayah pertambangan. Ecogreen, 1(2), 11–24.

Published

2025-07-30

How to Cite

Gandri, L., Fatahuddin, M., Bana, S., Hasani, U. O., Sakti, A., Fitriani, D., … Fitriani, V. (2025). Spatiotemporal dynamics of vegetation density in moramo district protected forest: A remote sensing approach. Applied Environmental Science, 3(1). https://doi.org/10.61511/aes.v3i1.2025.1812

Issue

Section

Articles

Citation Check