Alpha methanol city: IoT-integrated energy independent city concept as a realization of sustainable development goals 2030
DOI:
https://doi.org/10.61511/aes.v2i2.2025.1580Keywords:
direct air capture, renewable energy, internet of things, methanol conversion, alpha methanol cityAbstract
Background: Climate change, driven by rising greenhouse gas (GHG) emissions, necessitates innovative approaches to achieve sustainability. Indonesia's energy and industrial sectors are significant contributors to these emissions. Traditional CO₂ mitigation strategies, like reforestation, face limitations due to land and time requirements. Thus, technological solutions are critical to address the urgent climate crisis. Methods: This study introduces the Alpha Methanol City (AMC) concept, integrating direct air capture-carbon recycle society (DAC-CRS) systems with renewable energy sources, specifically solar and wind power, alongside IoT and big data technologies. Data were collected through an extensive literature review, analyzing advancements in DAC technology, renewable energy and IoT systems. Theoretical and practical insights were synthesized to propose an energy-independent city model. Findings: The AMC concept processes atmospheric CO₂ into methanol, leveraging renewable energy to reduce operational costs and emissions. IoT and smart grid technologies enable real-time monitoring, optimizing energy use and system performance. SWOT analysis highlighted strengths such as environmental impact and energy independence, alongside challenges like high initial costs and technical complexities. The integration of circular economy principles further enhances AMC’s sustainability. Conclusion: AMC presents a transformative model for urban sustainability by addressing CO₂ emissions and promoting renewable energy adoption. With an implementation timeline of approximately ten years, the concept provides a replicable framework for global sustainable urban development. Novelty/Originality of this article:This study uniquely integrates DAC technology with IoT and renewable energy to create a self-sustaining urban environment. By combining carbon recycling, smart energy management, and circular economy principles, AMC offers a holistic solution to climate and energy challenges, positioning it as a groundbreaking model for sustainable cities.
References
Amin, M., Jameel, S., & Khan, T. (2021). Smart waste management using IoT: Real-time monitoring and efficient routing. Waste Management, 123, 45-53. https://doi.org/10.1016/j.wasman.2021.06.001
Badan Energi Internasional (IEA). (2015). CO2 Emissions from Fuel Combustion Highlights. International Energy Agency. Paris.
Badan Meteorologi Klimatologi dan Geofisika (BMKG). (2021). Grafik Perbandingan Konsentrasi CO2. URL: https://www.bmkg.go.id/kualitasudara/
Breyer, C., Fasihi, M., Bajamundi, C. dan Creutzig, F. (2019). Direct Air Capture of CO2: A Key Technology for Ambitious Climate Change Mitigation. Joule. 2053-2065. https://doi.org/10.1016/j.joule.2019.08.010
Chen, Z., Wu, M., & Zhang, L. (2021). IoT-driven smart recycling systems for urban waste management. Resources, Conservation, and Recycling, 174, 105727. https://doi.org/10.1016/j.resconrec.2021.105727
Choi, S., Coronas, J., Lai, Z., Yust, D., Onorato F. dan Tsapatsis, M. (2008). Fabrication and Gas Separation Properties of Polybenzimidazole (PBI)/Nanoporous Silicates Hybrid Membranes. Journal of Membrane Science. 316 (12):145-152. https://doi.org/10.1016/j.memsci.2007.09.026
Civil Aviation Authority (CAA). (2017). Information on aviation’s environmental impact. URL: https://www.caa.co.uk/
CNBC. (2019). This Big-oil Backed Company Wants to Address Climate Change by Sucking Carbon Dioxide Out of the Air. URL: https://www.cnbc.com
Enerdata. (2018). Emisi CO2 dari Penggunaan Energi. URL: https://www.climatetransparency.org
Geisz, J.F., France, R.M., Schulte, K.L., Steiner, M.A., Norman, A.G., Guthrey, H.L., Young, M.R., Song, T. dan Moriarty, T. (2020). Six-junction III–V Solar Cells with 47.1% Conversion Efficiency Under 143 Suns Concentration. Nature Energy. 5 :326-335. https://doi.org/10.1038/s41560-020-0598-5
Geisz, J. F., France, R. M., Steiner, M. A., Norman, A. G., Guthrey, H. L., Young, M. R., Song, T., & Moriarty, T. E. (2020). Six-junction III-V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nature Energy, 5(4), 326–335. https://doi.org/10.1038/s41560-020-0571-6
Hassan, M., Usman, S., & Rehman, A. (2022). Anaerobic digestion for biogas production: Current practices and perspectives. Renewable and Sustainable Energy Reviews, 148, 111908. https://doi.org/10.1016/j.rser.2021.111908
Hook, L. (2020). Start-ups Test Ideas to Suck CO2 from Atmosphere. URL: https://www.ft.com
Kim, S., & Park, J. (2021). Community-based recycling initiatives and their role in circular economy. Waste Management, 120, 112-121. https://doi.org/10.1016/j.wasman.2021.02.045
Kumar, R., & Tripathi, R. (2022). IoT-based air quality monitoring and prediction system: A machine learning approach. Sustainable Cities and Society, 79, 103689. https://doi.org/10.1016/j.scs.2022.103689
Lee, H., Chang, J., & Chen, Y. (2020). Integration of renewable energy in waste management. Renewable Energy, 161, 1245-1256. https://doi.org/10.1016/j.renene.2020.01.114
Lehne, J. dan Preston, F. 2018. Making Concrete Change Innovation in Low-carbon Cement and Concrete. Chatham House. London.
Li, X., Wang, J., Zhang, X., & Zhao, Y. (2020). The role of Internet of Things in the future smart grid. IEEE Access, 8, 155345-155357. http://dx.doi.org/10.4236/jcc.2015.35029
Natural Resources Defense Council. (2016). NRDC’s Fourth Annual Energy Report Accelerating Into A Clean Energy Future. New York.
Nebath, E., Pang, D. dan Wuwung, J.O. (2014). Rancang Bangun Alat Pengukur Gas Berbahaya CO dan CO2 di Lingkungan Industri. E-Journal Teknik Elektro dan Komputer. 3 (4):65-72. https://doi.org/10.35793/jtek.v3i4.6012
Rosegrant, M.W. (2008). Biofuels and Grain Prices: Impacts and Policy Responses. International Food Policy Research Institute.
Sandzali, A.A., Utomo, S.B. dan Suprajitno, A. (2019). Optimasi Daya Penggabungan Panel Surya dan Kincir Angin Menggunakan Metode Switching. Prosiding Konferensi Ilmiah Mahasiswa Unissula (KIMU) 2. 18 Oktober 2019, Semarang, Indonesia. pp.80-89. https://jurnal.unissula.ac.id/index.php/kimueng/article/download/8422/3889
Sejati, K. (2011). Global Warming, Food, and Water Problems, Solutions, and The Changes of The World Geopolitical Constellation. Gadjah Mada University Press. Yogyakarta.
Subkhan, A., Setyowati, D.L. dan Setyaningsih, W. (2017). Kajian Emisi CO2 dari Pemanfaatan Energi Rumah Tangga di Kelurahan Candi Kota Semarang. Geo - Image. 6 (2):147-157. https://doi.org/10.15294/geoimage.v6i2.19058
Vega, E., Chalk, T.B., Wilson, P.A., Bysani, R.P. dan Foster, G.L. (2020). Atmospheric CO2 during the Mid-Piacenzian Warm Period and the M2 glaciation. Scientific Reports. 10 : 11002 https://doi.org/10.1038/s41598-020-67154-8
World Meteorological Organization (WMO). (2020). 2020 Closes a Decade of Exceptional Heat. URL : https://public.wmo.int
Wu, Y., Jiang, Z., Lu, X., Liang, Y. dan Wang, H. (2019). Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature. 575 (7784): 639-642. https://doi.org/10.1038/s41586-019-1760-8
Wu, Y., Zhang, X., & Wang, H. (2019). A study on the efficient conversion of CO₂ to methanol using cobalt phthalocyanine as a catalyst. Chemical Engineering Journal, 375, 121965. https://doi.org/10.1016/j.cej.2019.121965
Zhang, Y., Li, X., & Huang, R. (2023). AI-enhanced recycling systems for a sustainable future. Journal of Cleaner Production, 413, 137534. https://doi.org/10.1016/j.jclepro.2023.137534
Zhou, K., Yang, S., & Shao, Z. (2018). Energy internet: The business perspective. Renewable and Sustainable Energy Reviews, 78, 1–12. https://doi.org/10.1016/j.rser.2017.04.094
Zhou, W., Zhang, C., & Liu, J. (2018). A smart grid architecture based on cloud computing and big data. Renewable and Sustainable Energy Reviews, 81, 607-617. https://doi.org/10.1016/j.rser.2017.08.023
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Applied Environmental Science

This work is licensed under a Creative Commons Attribution 4.0 International License.