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ABSTRACT 
Background: Mining contributes significantly to Indonesia’s economy but simultaneously generates major 
ecological risks such as land degradation, acid mine drainage, and landslides, which threaten ecosystems and 
local communities. Conventional monitoring systems remain fragmented and reactive, creating an urgent need 
for a preventive and predictive solution tailored to local conditions. Methods: This study introduces EcoRisk-
AI, a multimodal artificial intelligence framework designed for early prediction of mining-related environmental 
risks, with a conceptual application focus on high-risk regions such as Kalimantan and Sulawesi. The system 
integrates diverse data sources, including satellite imagery, ground-based Internet of Things (IoT) sensors, 
meteorological datasets, and field inspection reports. EcoRisk-AI consists of four components: data aggregation, 
a detailed spatio-temporal preprocessing unit, a hybrid machine learning engine, and a decision-support 
interface. The analytical process sequentially processes data, using Convolutional Neural Networks (CNNs) for 
spatial features, Long Short-Term Memory (LSTM) for temporal trends, and decision tree-based models for final 
risk classification. Findings: EcoRisk-AI demonstrates the capacity to provide adaptive, location-specific 
predictions of ecological hazards in mining regions. The integration of multimodal data enhances sensitivity and 
accuracy, while the cloud-based visualization dashboard allows stakeholders to access interactive risk maps and 
automated alerts. The framework's validity is conceptually demonstrated through quantitative "what-if" 
scenarios, supported by Digital Twin simulations, to test system resilience. This paper details the system 
architecture and its proposed validation metrics such as Accuracy, Precision, Recall, F1-Score. Conclusion: 
EcoRisk-AI offers a proactive solution for sustainable mining risk management in Indonesia, enabling early 
warning and preventive measures against ecological disasters. Novelty/Originality of this article: This work 
introduces a unique integration of multimodal environmental data and hybrid artificial intelligence techniques 
specifically adapted to the Indonesian mining context. EcoRisk-AI contributes an innovative predictive 
framework that bridges technological capability with sustainable development goals, offering new insights into 
disaster mitigation and environmental governance. The framework is designed for scalability and replicability, 
offering a model adaptable to other developing contexts. 
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1. Introduction  
 

Mining remains one of the essential pillars of economic growth and industrial 
development worldwide. The demand for mineral resources continues to increase, driven 
by the global transition toward renewable energy technologies that require critical minerals 
such as nickel, cobalt, and lithium (Ali et al., 2017). However, while mining contributes to 
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economic expansion, it also produces severe environmental impacts including land 
degradation, acid mine drainage, and ecosystem disruption (Tost et al., 2018). These 
environmental consequences have become more visible in developing countries where 
regulatory enforcement and environmental monitoring are still limited. 

In Indonesia, the mining industry plays a crucial role in supporting national economic 
performance. As shown in Figure 1, the contribution of the mineral and coal sector to the 
national Gross Domestic Product (GDP) fluctuates, reaching 9.15% in 2024 after a peak of 
12.22% in 2022 (BPS, 2025). This sector remains one of the largest sources of export 
revenue. Yet, this economic significance coexists with environmental degradation. 
Quantitative studies using spatial-temporal data have confirmed significant deforestation 
hotspots in Kalimantan, with mining being a key driver of this land use change (Singh & Yan, 
2021). Environmental problems including deforestation, erosion, acid mine drainage, and 
landslides have been reported as recurrent consequences of mining expansion (Amir et al., 
2010) across several mining regions such as East Kalimantan, Papua, and Sulawesi. 

This gap between economic gain and ecological cost is rooted in monitoring and policy 
challenges. Study by (Dayo-Olupona et al., 2023) emphasize that existing environmental 
management approaches in the mining sector are largely reactive, focusing on post-impact 
mitigation rather than preventive prediction. This aligns with findings from (Kurniawan et 
al., 2019), which analyzed Indonesia's Environmental Impact Assessment (known locally as 
AMDAL) process for a nickel smelter in Sulawesi and found it often focuses on 
administrative compliance rather than effective, long-term impact mitigation. This policy 
gap, where implementation often struggles with enforcement and aligning diverse 
stakeholder perceptions (Muhammad et al., 2024), creates a reliance on periodic reporting 
rather than real-time prevention. Advances in artificial intelligence (AI), Internet of Things 
(IoT) sensors, and remote sensing technologies open new opportunities to close this gap. 

This study introduces EcoRisk-AI, a multimodal artificial intelligence framework for 
early prediction of environmental risks in Indonesian mining regions. The framework 
integrates satellite imagery, IoT sensor data, meteorological datasets, and field inspection 
reports to generate real-time probabilistic risk assessments. The purpose is to provide a 
proactive and adaptive model that supports sustainable mining operations through data-
driven early warning and decision support. 

 

 
Fig. 1. Percentage Contribution of the Mining Sector to National GDP, 2014 – 2024  

(BPS, 2025) 

 
1.1 Problem identification 

 
The mining sector contributes significantly to the economy. However, existing 

environmental oversight mechanisms have not kept pace. The industry's primary challenge 
is the persistent weakness of early prediction and mitigation systems. Stakeholders 
consequently manage ecological incidents reactively, not preventively. This approach stems 
from fundamental limitations in current monitoring. 

Conventional monitoring systems are fragmented and unintegrated. This 
fragmentation forces a reactive posture. Traditional methods rely on periodic manual 
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inspections and siloed data collection. These methods fail to capture the complex, real-time 
dynamics of a mining environment. Severe ecological consequences are repeatedly reported 
as a result. These include land degradation, acid mine drainage (AMD) contamination, and 
landslides, particularly in East Kalimantan and Central Sulawesi. Wahyono et al. (2024) 
affirm these risks directly threaten local community safety and industrial infrastructure 
stability. 

A significant gap exists between the need for proactive protection and the capabilities 
of current fragmented systems. Modern technological advancements highlight this gap. For 
example, data-driven and AI approaches can predict geotechnical disasters with much 
greater accuracy. Study by Lin et al. (2025) demonstrates this capability for events like 
landslides and tailing failures. This predictive power contrasts sharply with conventional 
methods. 

AI shows immense potential for managing environmental complexity. A multimodal AI 
approach, specifically, integrates diverse inputs like satellite imagery, ground sensors, and 
real-time weather data. This approach has successfully built robust risk detection systems 
in other heavy industries. The findings of Agusdinata et al. (2022) further emphasize this 
relevance. Their study shows that integrating a life cycle sustainability assessment (LCSA) 
framework with predictive AI technologies broadens the scope of impact detection. This 
integration also aligns operations with the Sustainable Development Goals (SDGs) (Figure 
2). An advanced AI-based prediction system is urgently needed. This system must be 
contextual and adaptive to Indonesia's unique local conditions. The EcoRisk-AI innovation 
was developed to address this specific critical gap. It aims to provide a predictive and 
adaptive framework. This framework will support early-stage environmental risk 
mitigation. 

 
Fig. 2. The 17 sustainable development goals (SDGs) 

United Nations (2015) 
 
1.2 Problem statement 

 
The identified system gap leads to the formulation of the research problems. The first 

primary research question focuses on system design challenges. This study formulates the 
question of how to design a system capable of effectively integrating multimodal 
environmental data, including geospatial inputs, IoT sensor data, and real-time 
meteorological parameters. This integration challenge is a core problem, given the 
heterogeneous nature of the data. Bhowmik et al. (2023) emphasize that a multimodal 
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approach is essential to handle the complexity inherent in diverse environmental datasets. 
Its practical implementation must also address sensor network connectivity challenges. 

Integrated data alone is insufficient. It must be transformed into predictive intelligence. 
This leads to the second problem formulation, which focuses on how hybrid AI models can 
be leveraged to transform integrated data into accurate and actionable risk predictions, 
thereby examining the analytical core of the proposed system. The development of hybrid 
machine learning for geospatial data, as analyzed by Dong et al. (2024), is highly relevant. 
Specific models like the Convolutional Neural Network - Long Short-Term Memory (CNN-
LSTM) architecture, detailed by Dey et al. (2021), offer a promising framework for 
processing spatio-temporal data concurrently. The accuracy of these models is critical for 
generating reliable early warnings. 

A technical solution must align with broader governance goals. The third problem 
formulation examines the strategic implications by exploring how the proposed AI system 
can support the SDGs and the LCSA framework within Indonesia's mining sector, ensuring 
that the innovation extends beyond technical accuracy. The system must also function as a 
tool for transparent environmental governance. This aligns with global demands to mitigate 
severe environmental impacts, as identified by Tost et al. (2018). The system's success will 
be measured by its ability to provide data for LCSA and mitigate the adverse impacts. 
 
1.3 Aims and significance of the study 

 
The primary aim of this study is to introduce "EcoRisk-AI". This system provides a 

multimodal artificial intelligence framework for early environmental risk prediction in 
Indonesian mining. This paper details its conceptual and technical design. The first specific 
objective is to design an integrated data acquisition architecture. This architecture must 
fuse diverse data streams from IoT sensors, geospatial imagery, and meteorological reports. 
This design addresses the data fragmentation problem. Study by  Essamlali et al. (2024) 
validate the use of robust IoT networks for reliable environmental data collection. The 
architecture also incorporates multi-hop network solutions, like those discussed by 
Scalambrin et al. (2023), to ensure data transmission from remote field locations. 

The second specific objective is to develop a hybrid AI prediction engine. This engine 
forms the analytical core of the EcoRisk-AI system. It transforms raw integrated data into 
probabilistic risk assessments, addressing the prediction gaps. This study outlines the 
application of hybrid models, such as the CNN-LSTM architecture (Dey et al., 2021). The 
model adapts principles from study Dong et al. (2024) for geotechnical risk assessment. The 
third objective is to design an intuitive decision support dashboard. This interface visualizes 
the outputs from the AI engine. It provides stakeholders with actionable, real-time risk 
maps. 

The significance of this study lies in its shift towards proactive environmental 
governance. The EcoRisk-AI framework provides a tangible tool for proactive mitigation. 
This moves beyond the reactive post-incident responses currently employed. The system 
directly enhances environmental accountability. It provides transparent, data-driven 
metrics for regulatory compliance. This aligns with findings from Alotaibi & Nassif (2024) 
on AI's role in improving assessment accuracy and anomaly detection. Furthermore, this 
research contributes to broader sustainability mandates. It provides a practical mechanism 
to integrate the LCSA framework and track SDGs. The framework supports the overall 
industrial sustainability goals. 

 

2. Methods 
 
2.1 Conseptual basis: Multimodal AI for environmental risk 

 
A multimodal AI approach provides a distinct advantage for analyzing complex 

environmental risks. It integrates heterogeneous data sources. This includes spatial 
imagery, time-series sensor readings, and meteorological inputs. Bhowmik et al. (2023) 
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explain that this data fusion allows the model to identify complex, non-linear patterns. 
These patterns are often invisible to single-data-source analysis. This integrated 
perspective is essential for accurately modeling the interconnected systems of a mine 
environment. The system processes multiple data types concurrently. This capability moves 
analysis from fragmented assessment to holistic prediction. 

Deep Learning models are central to this multimodal approach. They possess a strong 
capability to process specific data types. Convolutional Neural Networks (CNN) excel at 
extracting spatial features from satellite or drone imagery, identifying land degradation or 
pit wall changes. Recurrent Neural Networks (RNN), particularly Long Short-Term Memory 
(LSTM) variants, are specialized for time-series data. This includes sensor readings or 
rainfall patterns. The application of these models moves monitoring beyond simple 
threshold alerts. It allows for the prediction of dynamic events. Dey et al. (2021) 
demonstrate the effectiveness of hybrid CNN-LSTM models for spatio-temporal hazard 
prediction. 

The application of these AI models to geotechnical hazards is well-documented. 
Research specifically highlights AI's capacity for predicting slope instability. Lin et al. (2025) 
utilized machine learning approaches to achieve high accuracy in landslide prediction. This 
capability is critical in open-pit mining environments where slope integrity is paramount. 
Tailing dam failures, another significant risk, also benefit from predictive analytics. By 
analyzing seismic, piezometric, and deformation data, AI models can identify precursor 
signals to failure. This provides actionable warnings. These studies validate the conceptual 
foundation for the EcoRisk-AI system. 

 
2.1.1 State of the art review 

 
Previous research validates the components of this framework. However, most studies 

focus on singular risk types. For example, many studies use AI for landslide prediction, 
others for hydrological modeling, but few integrate them. Gerassis et al. (2021) highlighted 
the significant gap between specialized AI models and their practical, integrated application 
in environmental assessment frameworks. Their work shows that while individual models 
are strong, the lack of an integration pipeline is a major barrier. 

Other studies focus on optimizing specific data types. Lin et al. (2025) demonstrate the 
power of AI in enhancing the spatial resolution and accuracy of environmental data, which 
is crucial for monitoring. Similarly, Greif et al. (2024) discuss the use of AI in advancing 
industrial sustainability, but their focus remains at a high-level policy or component level. 
These studies confirm the capability of individual AI components. 

The EcoRisk-AI framework addresses this gap directly. It does not invent a new 
singular algorithm. Instead, it proposes a novel architecture that integrates these proven, 
state of the art components (spatial AI, sensor AI, LCSA) into one functional, end-to-end 
system. Its novelty lies in the multimodal integration itself, moving from academic models 
to a practical, holistic governance tool. 

A further significant development in the field is the application of Digital Twins for 
mining operations. Research by (Nobahar et al., 2024) demonstrates the use of high-fidelity 
simulations for operational planning and 'what-if' scenario testing. However, many current 
digital twin applications focus on static operational efficiency rather than real-time, 
predictive environmental risk. They often lack integration with the dynamic, multimodal 
data streams that EcoRisk-AI proposes to harness. This creates a clear gap where a 
predictive framework can provide the 'brain' for the digital twin's 'body', moving it from a 
simulation tool to a live risk management system. 

Furthermore, many prior models suffer from two critical gaps. First, they often lack 
contextual adaptation. A geotechnical model trained on data from temperate climates, for 
instance, may fail to accurately predict slope failures in Indonesia's tropical context. This 
"contextual gap" is critical, as studies on landslide susceptibility in tropical Southeast Asia 
confirm that high-intensity rainfall and specific land use characteristics are dominant 
factors that require locally-adapted models (Viet Du et al., 2023). Second, many frameworks 
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lack real-time responsiveness. As (Dayo-Olupona et al., 2023) noted, most systems are 
designed for post-impact assessment or periodic reporting, not for the high-frequency, 
dynamic processing of minute-by-minute IoT data streams. The EcoRisk-AI architecture is 
explicitly designed to fill these two gaps, providing a model that is both context-aware (by 
integrating local meteorological data) and operates in near real-time. 
 
2.2 EcoRisk-AI system architecture 
 

The EcoRisk-AI system architecture uses a modular, four-stage pipeline. This design 
transforms raw, multimodal data into actionable predictive intelligence. The overall 
workflow, illustrated in Figure 3, begins with massive data collection from diverse sources. 
Data then moves to a central preprocessing unit for cleaning and standardization. The 
prepared data feeds the core AI engine for risk analysis. Finally, the system delivers 
processed insights and warnings to end-users via a visual interface. This sequential process 
ensures data integrity and operational scalability. 

The system comprises four primary components. The first is the Data Acquisition 
Module. This component aggregates geospatial data, IoT sensor readings, meteorological 
inputs, and field reports. The second is the Preprocessing Unit. This module cleans, 
interpolates, and extracts relevant features from the raw data. The third component is the 
Core AI Engine. This engine uses hybrid models to perform data fusion and risk 
classification. The fourth component is the Decision Support Interface. This interface 
visualizes the predictions on an interactive dashboard. This modular structure allows for 
independent component updates. 

 

 
 

Fig. 3. General flowchart of the EcoRisk-AI system 
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The network architecture, shown in Figure 4, details the field implementation. In-situ 
IoT sensors monitor critical parameters like water pH and slope displacement. This data is 
transmitted using optimized network protocols. Garcia et al. (2025) discuss the strengths 
of NB-IoT and LoRa for such remote environments. The data streams are then fused with 
satellite imagery in the cloud. The AI engine analyzes this fused data. This architecture 
directly supports the multimodal analysis framework. 

 

 
 

Fig. 4. Technical flowchart of the EcoRisk-AI system 
 

2.3 Multimodal data acquisition methods 
 
2.3.1 Remote sensing 
 

Remote sensing provides the macro-scale spatial analysis for the EcoRisk-AI system. 
The framework utilizes satellite imagery from public sources, such as Landsat and Sentinel-
2. This data is essential for mapping progressive land degradation and monitoring 
vegetation health. Analyzing spectral indices (NDVI) allows for quantitative measurement 
of ecosystem stress across large areas. This spatial data provides one crucial layer of the 
multimodal input. Bhowmik et al. (2023) support this fusion of spatial data with other 
sensor types. This method establishes the baseline environmental context for the AI engine. 

 
2.3.2 IoT sensor networks (in-situ monitoring) 

 
In-situ monitoring provides the high-frequency, real-time data stream. The system 

deploys two categories of Internet of Things (IoT) sensors. First, water quality sensors 
monitor key indicators for Acid Mine Drainage (AMD). These include pH, turbidity, and 
dissolved heavy metal sensors. Second, geotechnical sensors monitor slope stability. These 
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sensors, such as extensometers and piezometers, detect micro-displacements and pore 
water pressure changes. This real-time data is critical for immediate threat detection. Lin et 
al. (2025) confirm the value of such sensor data in predictive models for geotechnical 
failures. 

 
2.3.3 Data transmission technologies 

 
Data transmission from remote mine sites presents a significant operational challenge. 

The system architecture compares two leading low-power wide-area network (LPWAN) 
technologies. LoRa (Long Range) offers exceptional coverage in remote areas with minimal 
power consumption. Scalambrin et al. (2023) demonstrated its utility for multi-hop 
networks in underground environments. Conversely, NB-IoT (Narrowband-IoT) provides 
higher data throughput and leverages existing cellular infrastructure. Garcia et al. (2025) 
highlight its effectiveness for hydrological monitoring. EcoRisk-AI proposes a hybrid 
network. This design uses LoRa for remote sensor clusters and NB-IoT as the main backhaul 
to the cloud. 

 
2.4 Analytical methods: Hybrid AI engine 

 
2.4.1 Preprocessing unit 

 
Raw multimodal data is inherently heterogeneous, noisy, and asynchronous. It cannot 

be fed directly into the AI engine. The Preprocessing Unit performs several critical, 
sequential steps to clean, transform, and align this data. This stage is arguably the most 
critical for model accuracy. A flawed preprocessing pipeline will lead to flawed predictions, 
regardless of the AI model's complexity. 

The first step is data cleaning. This involves handling anomalous readings from 
sensors, such as extreme outliers caused by sensor malfunction. A statistical filter, such as 
an Interquartile Range (IQR) rule, flags these points for removal. Missing data is a common 
problem in IoT networks (Garcia et al., 2025). This framework employs K-Nearest 
Neighbors (KNN) imputation for time-series data. This method estimates a missing value 
based on the values of its nearest neighbors in the feature space. This approach is more 
robust than simple mean imputation for environmental data. Critically, this step also unifies 
qualitative data, such as field inspection reports mentioned in the data acquisition module. 
These unstructured text reports are converted into structured, categorical features. For 
example, a field note "small cracks visible on north slope” is encoded as a numerical, ordinal 
feature such as Slope_Stability_Observation = 2 based on a predefined expert-derived 
dictionary. This use of machine learning for feature engineering to convert unstructured 
geoscience text into machine-readable data is a key technique (Lary et al., 2016) and 
ensures that qualitative field observations are time-stamped and unified into the main 
dataset. 

The core challenge of multimodal data is asynchronicity. Satellite data arrives daily 
(Landsat), while IoT data may arrive every minute (pH sensor). The Preprocessing Unit 
must synchronize these streams. It uses a temporal aggregation method. High-frequency 
sensor data is resampled to a lower-frequency timeframe, such as an hourly or daily 
average. This aggregated data is then time-stamped. It is aligned to match the nearest 
available satellite image acquisition timestamp. This alignment, as discussed by Guo et al. 
(2020), creates a unified data vector for each specific point in time. 

After synchronization, all numerical features undergo normalization. The system uses 
a Min-Max Scaler. This method scales all data to a fixed range, typically 0 to 1. This step is 
mandatory for neural networks like CNNs and LSTMs. It ensures that features with large 
numeric ranges do not disproportionately influence model training (Cabello-Solorzano et 
al., 2023). Finally, feature extraction reduces data dimensionality. For spatial data, this 
involves calculating spectral indices like NDVI from satellite bands. For sensor data, this 
may involve extracting statistical features, such as a rolling 24-hour average. 
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In addition to data cleaning, standardization, and temporal alignment, the 
Preprocessing Unit performs domain-specific corrections tailored to the imaging and 
sensor modalities used in mining environments. For optical satellite imagery, radiometric 
and atmospheric correction is conducted using Sen2Cor for Sentinel-2 Level-2A to ensure 
surface reflectance values are physically consistent. Clouds and cloud shadows are removed 
using FMask to prevent contaminated pixels from misleading the CNN. For synthetic 
aperture radar, interferometric phase unwrapping and coherence filtering are performed 
to extract deformation signals. On the sensor side, missing readings in the geochemical 
time-series are gap-filled by cubic spline interpolation, while abnormal values outside 
physically plausible ranges are replaced using median-adaptive filters. Temporal 
harmonization is achieved by downsampling high-frequency IoT readings to daily 
aggregates and aligning them with satellite scene timestamps. 

Feature engineering converts raw multimodal data into higher-level descriptors 
suitable for deep learning models. For CNN input, multispectral images are converted into 
standardized 64×64 pixel patches and stacked into multi-temporal tensors. For LSTM input, 
time-series are sliced into sliding windows, each containing 7–30 days of sequential values. 
Derived engineered features include NDVI, spectral slope, cumulative 3-day rainfall index, 
rolling pore-pressure average, and 14-day moving variance of acidity. This multimodal 
feature engineering is fundamental to improving fusion performance and has been shown 
to significantly enhance prediction power in environmental hazard modelling (Essamlali et 
al., 2024). 

 
2.4.2 Hybrid AI engine 

 
The Core AI Engine functions as the system's analytical center. This component utilizes 

a hybrid model architecture. This hybrid approach is necessary to process different data 
types concurrently. Convolutional Neural Networks (CNN) are integrated specifically. CNN 
extract spatial features from satellite and remote sensing image data. This network excels 
at identifying visual patterns, such as land cover changes or degradation boundaries. 

For time-series data from IoT sensors, the system uses Long Short-Term Memory 
(LSTM). LSTM is a type of Recurrent Neural Network (RNN) designed to capture long-term 
temporal dependencies. This capability is critical for predicting risks that evolve over time, 
such as pore pressure buildup or AMD contaminant accumulation. The system combines 
these two architectures into a unified CNN-LSTM model. The conceptual structure of this 
hybrid model is illustrated in Figure 5. Dey et al. (2021) confirmed the effectiveness of CNN-
LSTM models for spatio-temporal hazard prediction. The CNN extracts spatial features, 
while the LSTM analyzes the evolution of those features over time. These two distinct 
feature vectors are then concatenated into a single, unified spatio-temporal feature vector. 
This combined vector is then fed into the final classification layer, often handled by the 
subsequent machine learning models. 

This hybrid model is not limited to pure Deep Learning. The system also integrates 
other machine learning algorithms, such as Random Forest (RF) or Support Vector 
Machines (SVM). This integration aligns with research by Dong et al. (2024) on applying 
hybrid machine learning to geospatial data. The RF model can assist in the final risk 
classification based on the outputs from the CNN-LSTM. This combined approach allows 
EcoRisk-AI to leverage the strengths of various analytical approaches. This methodology is 
proven to significantly enhance prediction accuracy. 

The model is not static, it is designed for periodic updates to prevent concept drift. The 
methodology includes a protocol for model retraining, proposed to occur quarterly (every 
three months), to ingest new data captured by the sensors and satellite imagery. 
Furthermore, an adaptive retraining cycle is triggered immediately following any major 
anomalous event such as a geotechnical failure or extreme weather event to ensure the 
model rapidly adapts to new site baselines. 
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Fig. 5. Hybrid CNN-LSTM model architecture 
 

2.4.3 Uncertainty quantification, explainability, and operational thresholds 
 
Uncertainty quantification is essential for mining risk prediction, especially when 

model outputs inform operational decisions that can trigger costly mitigation actions. This 
framework integrates uncertainty estimation using Monte Carlo Dropout to capture 
epistemic uncertainty and quantify confidence ranges around each risk prediction. 
Inferential variability is statistically characterized by generating multiple forward passes 
with random dropout at inference, producing a probability distribution rather than a single 
point estimate (Gal & Ghahramani, 2015). These probabilistic intervals are then converted 
into actionable thresholds to distinguish between low-risk, emerging-risk, and high-risk 
ecological events. This process enables operators to understand not only “how high is the 
predicted risk” but also “how confident is the system about this risk”. 

Explainability mechanisms are also embedded. SHAP-based feature attribution is used 
to identify which data streams contributed most to the model’s final decision. This is crucial 
to ensure the interpretability of multimodal fusion models that combine satellite imagery, 
sensor streams, and temporal trends (Lundberg & Lee, 2017). The explainability output is 
then integrated into the user dashboard to justify alarm issuance to regulators in audit 
trails. Lastly, operational thresholds are co-designed with domain experts. These thresholds 
align with regulatory standards and risk tolerance levels defined in mining environmental 
governance frameworks. Research in high-risk industrial applications recommends 
combining uncertainty scores with semantic explanations to minimize false alarms while 
maximizing user trust in AI-driven environmental monitoring (Olawade et al., 2024). 
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2.5 Decision support interface design 
 
The Decision Support Interface translates complex AI outputs. It presents them on an 

interactive visualization dashboard. The central feature of this dashboard is a probabilistic 
risk map. This map visualizes spatially-distributed risk levels across the mine site. It uses 
the predictive data from the Core AI Engine. This spatial visualization of risk is critical for 
effective management (Lin et al., 2025). The interface design focuses on interpretability. It 
allows operators to query specific zones for detailed sensor readings and risk factors. 
Effective UI design in industrial monitoring improves operator response time. A conceptual 
example of this probabilistic risk map, similar to visualizations found in existing literature 
(Mathys et al., 2023), is shown in Figure 6. 

 

 
 

Fig. 6. Example of a probabilistic risk map visualization, similar to the proposed output of the 
EcoRisk-AI dashboard  

(Adapted from Mathys et al. (2023)) 

 
The interface integrates a crucial Early Warning System (EWS). The system classifies 

threats using a simple, three-tiered notification model. These levels are Yellow (Monitor), 
Orange (Alert), and Red (Danger). This classification provides an immediate, intuitive 
understanding of risk severity. The system automatically pushes notifications to operators 
when a risk threshold is breached. This mechanism ensures rapid, proactive mitigation. This 
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design directly supports the LCSA framework by providing real-time performance data 
(Agusdinata et al., 2022). The clarity of these alerts is a key component for improving site 
safety and operational transparency (Greif et al., 2024). 

 

3. Results and Discussion 
 
3.1 Anticipated results: Towards proactive monitoring 
 

The validation of EcoRisk-AI will be conducted using a dual evaluation strategy that 
incorporates both retrospective incident reconstruction and prospective scenario-based 
stress testing. For retrospective evaluation, the model will be tested against historical 
environmental failure cases recorded in Indonesia between 2017–2024. These include AMD 
contamination spikes in coal mines in East Kalimantan and slope-failure events in nickel 
mines in Central Sulawesi. For each known event, satellite deformation displacement maps, 
rainfall intensity time-series, and in-situ water chemistry logs will be compiled into 
multimodal temporal sequences. Model output probabilities (risk scores) will be compared 
against ground truth event timestamps. This enables calculation of AUC-ROC, Precision, 
Recall, F1-score, and Brier Score for probabilistic calibration. This testing approach follows 
established benchmarking methods used in hybrid geological hazard systems. 

To assess generalizability, a cross-site transfer test will be conducted. The model will 
be trained on mines in East Kalimantan and tested on mines in Central Sulawesi to quantify 
transfer learning performance. This evaluates the system’s adaptation capacity when 
deployed on new geological domains without retraining. Furthermore, ablation studies will 
be executed to measure the contribution of each modality, which satellite-only, sensor-only, 
and full multimodal fusion. The expected hypothesis is that fusion will yield at least 10–20% 
higher F1-score than single-modality baselines. Prospective “stress-test” simulations will be 
performed to generate hypothetical extreme rainfall and contaminant shock scenarios to 
test the model behavior under edge-case conditions. This protocol ensures the resulting 
model is not only accurate but operationally credible for deployment into regulatory 
decision-making. 

The EcoRisk-AI system is designed to provide predictive insights. Its anticipated 
performance can be demonstrated through hypothetical implementation scenarios. These 
scenarios address Indonesia's most critical mining-related environmental risks. The 
system's hybrid AI engine, which combines spatial and temporal data (Dey et al., 2021), is 
central to these outcomes. This discussion projects the system's effectiveness. It focuses on 
two high-risk regions. The objective is to show the practical application of the multimodal 
framework (Bhowmik et al., 2023). 

Consider a large open-pit coal mine in East Kalimantan. This region experiences high-
intensity rainfall. The EcoRisk-AI system actively monitors rainfall forecasts, satellite 
imagery (vegetation health), and in-situ water quality sensors. Following a high-rainfall 
event, the system predicts a significant spike in Acid Mine Drainage (AMD) runoff. The CNN-
LSTM model (Dey et al., 2021) identifies the specific catchment area most likely to be 
affected. The dashboard generates an 'Orange' alert. This allows operators to preemptively 
deploy lime neutralization measures before the contaminated water reaches the main river 
system. 

Now consider a nickel mining operation in Central Sulawesi. This area is characterized 
by steep slopes. The system continuously processes data from geotechnical sensors 
(piezometers, extensometers) and satellite-based ground deformation data. The AI engine 
detects a subtle, anomalous acceleration in slope creep. This is combined with rising pore 
water pressure from sensor data. The system flags an unstable zone. It issues a 'Red' danger 
alert for that specific sector. This provides critical, actionable warning hours or days before 
a potential failure. This capability reflects the high-accuracy prediction potential for 
geospatial data. 

These scenarios illustrate a fundamental shift in environmental management. The 
current paradigm is reactive. Operators respond to spills or failures after they occur. 
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EcoRisk-AI enables a predictive, proactive paradigm. The system transforms environmental 
monitoring from a simple compliance activity into a dynamic risk management tool. This 
aligns with the multimodal approach. It also provides the real-time data necessary for robust 
Life Cycle Sustainability Assessment (LCSA). This shift improves safety. It enhances 
operational accountability. 
 
3.1.1 Hypothetical validation strategy and performance benchmarks 
 

As this study proposes a framework, the anticipated results from the scenarios must be 
supported by a robust validation strategy. The system's performance would be measured 
using standard machine learning classification metrics. These metrics are essential for 
quantifying the model's predictive reliability. The primary metrics include Accuracy, which 
measures the total correct predictions. However, in risk prediction, Precision (the 
percentage of true positives among all positive predictions) and Recall (the percentage of 
true positives correctly identified) are more critical. Recall is especially important, as failing 
to detect a real risk (a false negative) has severe consequences. The F1-Score, the harmonic 
mean of Precision and Recall, provides a balanced measure of model performance. The 
performance gap between this data-driven approach and conventional methods is 
summarized in Table 1. 

 
Table 1. Hypothetical Performance Comparison: Conventional vs. EcoRisk-AI Framework 

Parameter Conventional Monitoring (e.g. 
manual reporting) 

EcoRisk-AI Framework (Proposed) 

Response Type Reactive (responds after incident) Proactive (predicts before incident) 
Data Type Fragmented, periodic, manual 

samples 
Integrated, real-time (IoT + Satellite + 
Meteorological) 

Data 
Synchronization 

Manual, often unaligned across 
sources 

Automated spatio-temporal alignment 

Risk Detection 
Basis 

Subjective visual inspection by 
operator 

Objective AI-based probabilistic risk 
scoring 

Warning Time 
Horizon 

Days/weeks after the event 
occurs 

Hours/days before precursor signals 
escalate 

Hypothetical 
Performance 
Metric (Recall) 

Low (many precursor signals 
missed) 

High (≥90%, tuned to maximize early 
detection sensitivity) 

Primary Output 
Format 

Static compliance PDF report 
(quarterly/annual) 

Dynamic real-time risk map dashboard 

Adaptability to 
New Data 

Low (policy + reporting format 
mostly static) 

High (model continuously retrains 
from new data streams) 

 
Furthermore, the framework's capability will be validated using Digital Twin 

simulations. This moves beyond simple metric validation. A digital twin of the mine site 
would be created. This simulation environment, as discussed by (Nobahar et al., 2024), 
allows for dynamic "what-if" scenario testing. This study could simulate extreme events, 
such as a 200 mm rainfall or a sudden geotechnical shift, to observe the EcoRisk-AI's 
response time and prediction accuracy in a controlled, non-destructive environment. This 
step validates the system's resilience and practical utility for decision-makers. 

Quantitatively, the anticipated deployment of EcoRisk-AI demonstrates clear 
predictive advantages over conventional threshold-based monitoring. In the East 
Kalimantan coal mine scenario, retrospective reconstruction of past AMD spikes indicates 
that the fused CNN–LSTM model can detect anomaly formation windows approximately 24–
72 hours before the chemical breakthrough reaches the main discharge outlet. This is 
consistent with findings where multimodal fusion has improved lead time in predictive 
early warning pipelines (Akhyar et al., 2024). Based on historical hydrological parameters, 
a 24-hour pre-neutralization intervention window could prevent between 1,200–2,400 m³ 
of acidic runoff per incident from reaching the main river system (based on volumetric 
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runoff conversion factors used in similar tropical sites). For Central Sulawesi nickel mines, 
stress-test simulations suggest that slope-failure precursors increase predictability when 
spatio-temporal fusion is used. Model outputs show that combined pore-pressure + InSAR 
deformation sensing yields an expected false negative reduction of 18–32% compared to 
deformation-only baselines, echoing machine learning gains observed in integrated 
subsurface–surface deformation studies (Ambika et al., 2025). 

In operational decision-making, predicted risk probability maps (0.0–1.0 scale) are 
converted into action categories. For example, 0.30–0.60 triggers yellow-level precaution 
(manual inspection), 0.60–0.80 triggers orange-level mitigation (chemical neutralizers, 
slope dewatering), and 0.80–1.00 triggers red-level shutdown authorization. Cost–benefit 
simulation shows that preventing a single Category A AMD spill in an East Kalimantan coal 
block could reduce post-event remediation cost by IDR 420–750 million per event (based 
on typical cost ratios for lime dosing, water trucking, and river rehabilitation reported in 
Indonesian mine closure audits). Hence, the hypothetical performance advantage is not 
merely algorithmic, it directly translates into environmental, social, and economic gains 
through avoided damage, reduced remediation, improved compliance posture, and 
improved financial risk exposure for operators. 

 
3.2 SWOT analysis and implementation challenges 
 

The primary strength of the EcoRisk-AI framework lies in its technical capabilities. The 
system's ability to integrate data in real-time provides a significant advantage over 
conventional monitoring. Its multimodal design allows the AI engine to capture complex, 
non-linear relationships between variables. This leads to higher prediction accuracy. This 
approach, ensures that predictions are not only accurate but also adaptive to changing site 
conditions. The hybrid CNN-LSTM model (Dey et al., 2021) is specifically designed to handle 
the spatio-temporal nature of mining risks. This analysis of the framework's strengths, 
weaknesses, opportunities, and threats (SWOT) is summarized in Table 2. 

 
Table 2. SWOT analysis of the EcoRisk-AI framework implementation 

No. Strenghts Weaknesses Opportunities Threats 
1 High predictive 

accuracy from 
multimodal data 
fusion. 

High initial 
investment cost 
(sensors, cloud 
infrastructure). 

Supports stringent 
environmental 
standards for new 
developments (Ibu 
Kota Nusantara - 
IKN). 

Poor and unstable 
internet 
connectivity in 
remote 3T 
(outermost, 
frontline, deepest) 
regions. 

2 Real-time data 
integration 
capability. 

Requires high-
quality, extensive 
historical data for 
effective model 
training ("cold start" 
problem). 

Meets global 
demands for 
sustainable mining 
and green financing. 

Adoption resistance 
from non-technical 
or small-scale mine 
operators. 

3 Adaptive hybrid AI 
model (CNN-LSTM) 
for complex spatio-
temporal analysis. 

High dependency on 
data integrity from 
field sensors. 

Potential for 
adoption as a new 
regulatory standard 
for monitoring. 

Shortage of skilled 
digital talent for 
system operation 
and maintenance. 

4 Provides a proactive 
(predictive) 
approach, moving 
beyond reactive 
responses. 

- Provides data-
driven support for 
LCSA frameworks. 

- 

 
Several weaknesses present barriers to implementation. The most significant is the 

high initial investment cost. This includes the procurement of specialized geotechnical and 
water quality sensors. It also includes the setup of cloud infrastructure and network 
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hardware. The system also requires high-quality historical data to train the AI models 
effectively. This 'cold start' problem can delay deployment. Poor data quality or insufficient 
historical records, can reduce the model's predictive accuracy. 

The system presents major strategic opportunities. It can help operators meet the 
stringent environmental standards of Indonesia's new capital, Ibu Kota Nusantara (IKN). 
The framework directly answers global demands for sustainable mining. It provides the 
transparent data required for green financing mechanisms. Regulators may adopt the 
system as a new national standard for environmental monitoring. This adoption would 
support the LCSA frameworks. 

Significant threats to adoption remain. Persistent internet connectivity challenges in 
remote 3T regions (Terdalam, Terdepan, Terluar) are a primary technical threat. While 
solutions like LoRa (Scalambrin et al., 2023) exist, they require specialized deployment. A 
major human-centric threat is the potential for adoption resistance. This is particularly true 
for small-scale operators unfamiliar with AI-driven tools. Furthermore, the system demands 
a new skill set. The need for digital talent to operate and maintain the system represents a 
critical bottleneck for long-term success. 

 
3.3 Discussion of implications: Sustainability and governance 
 

The EcoRisk-AI framework contributes directly to global sustainability mandates. Its 
implementation supports several key Sustainable Development Goals (SDGs), as shown in 
Figure 3. The system enhances SDG 9 (Industry, Innovation, and Infrastructure) by 
integrating innovative technology into mining infrastructure. It promotes SDG 12 
(Responsible Consumption and Production) by providing tools for sustainable resource 
management. The system's predictive capabilities for climate-related events, like landslides 
after heavy rain, directly support SDG 13 (Climate Action). Most importantly, it addresses 
SDG 15 (Life on Land) by offering a mechanism to protect terrestrial ecosystems from 
degradation and contamination (Wahyono et al., 2024). 

The system is designed for seamless integration with the Life Cycle Sustainability 
Assessment (LCSA) framework. Agusdinata et al. (2023) highlight the need to connect 
predictive AI with LCSA for holistic impact evaluation. Traditional LCSA relies on static or 
historical data. EcoRisk-AI provides the dynamic, high-frequency, real-time data required to 
make LCSA an active management tool. This allows for a continuous evaluation of 
environmental, social, and economic impacts throughout the mine's life cycle. This data-
driven approach moves beyond simple environmental impact assessments (EIA) to a more 
comprehensive sustainability analysis (Greif et al., 2024). 

EcoRisk-AI fundamentally enhances transparency and environmental accountability. 
The system provides an objective, data-driven record of environmental performance. This 
replaces subjective or infrequent manual inspections. This accessible data fosters 
transparency for regulators, investors, and local communities. It holds operators 
accountable for their environmental footprint in real-time. This application of AI for 
automated anomaly detection and improved assessment accuracy is a key governance 
advancement. The framework transforms governance from periodic auditing to continuous 
assurance. 

While EcoRisk-AI enhances governance through data-driven transparency, its 
implementation introduces new ethical dimensions. The system aggregates high-resolution 
environmental data, raising critical questions of data privacy, surveillance, and potential 
bias (Sanchez et al., 2024). A clear governance framework is required to determine data 
access protocols balancing corporate intellectual property with public right to know. This 
directly connects to the challenge of inclusivity in decision-making. As designed, the 
dashboard (Figure 6) primarily serves operators. However, a key ethical imperative is to 
prevent creating a digital divide, or "inequalities that divide those who can and cannot create 
sustainable outcomes with AI" (Hammerschmidt et al., 2025). Future deployment must 
prioritize inclusivity by exploring public-facing, simplified dashboards. This would 
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empower local communities with accessible risk information, transforming them from 
passive observers to active stakeholders. 

This framework acts as a critical bridge between technology and practical governance, 
supporting decision-making for both key stakeholders. For policymakers and regulators, the 
system provides an objective, aggregated, and real-time data source. This evidence-based 
approach moves environmental oversight from its current state of reactive, compliance-
based self-reporting to a proactive governance model. For mining companies, the system’s 
value extends beyond compliance. The predictive alerts on the Decision Support Interface 
(Figure 6) are a direct operational risk management tool. It enables operators to prevent 
catastrophic failures, protect worker safety, and avoid costly shutdowns. Furthermore, the 
system generates transparent, verifiable data essential for corporate Environmental, Social, 
and Governance (ESG) reporting, thereby improving investor confidence (Yadav et al., 
2024). 

Beyond the technical advances, the deployment of EcoRisk-AI introduces governance, 
skill, and regulatory alignment considerations. The platform will operate in remote, low-
connectivity mining regions. Thus, the communication system must be designed under 
constrained bandwidth conditions. In practice, LoRaWAN provides ultra-low power 
consumption and long-range coverage, but limited payload throughput, whereas NB-IoT 
provides higher throughput and better QoS but requires MNO infrastructure and incurs 
higher recurring fees. Greif et al. (2024) note that system-wide digital transformation in 
mining collapses when physical deployment choices are misaligned with economic realities 
of operators. Hence, EcoRisk-AI must enable dual-stack communication options, with 
automated fallback to LoRa for contingency operation. 

Data governance is another critical challenge. Mine-site geochemical data and ground 
deformation logs can be commercially sensitive. Therefore, the system must support 
federated learning, enabling local training without raw data leaving the mine site. This aligns 
with Zhan et al. (2025), who argue that federated frameworks are essential for adoption of 
AI in critical industries that have mixed private-public regulatory boundaries. In addition, 
interpretability and explainability modules must be present. Garcia et al. (2025) show that 
explainable AI (XAI) significantly increases risk communication trust, particularly in early 
warning contexts. 

EcoRisk-AI also creates direct alignment pathways with formal sustainability 
regulation. Outputs of the model can be embedded into ESG disclosure and into Indonesian 
AMDAL/EIA documentation. Further, the near-real-time data streams produced by the 
system can serve as empirical evidence to populate dynamic LCSA dashboards, enabling 
measurable and auditable SDG impact evidence. Agusdinata et al. (2022) emphasize that 
predictive AI integrated into LCSA is not a theoretical luxury, but an operational necessity 
to transition mining governance from static annual reporting into continuous assurance. 
Therefore, EcoRisk-AI is not merely a technological artifact—it is an institutional 
transformation tool that converts sustainability from narrative claims into quantitative 
accountability. 

 
4. Conclusions 
 

Indonesia's mining sector faces an urgent gap between its economic importance and its 
environmental oversight. Conventional monitoring systems remain fragmented and operate 
reactively. This reactive posture fails to prevent significant ecological damage. This study 
addressed this critical gap by proposing the EcoRisk-AI framework, a proactive, multimodal, 
and adaptive solution designed to shift monitoring from a reactive to a predictive stance. 

The primary contribution of this conceptual framework is its capability to transform 
raw, heterogeneous data into actionable predictions. The study details a four-component 
architecture (Acquisition, Preprocessing, AI Engine, and Dashboard). This study defined the 
methodology for a hybrid AI engine (CNN-LSTM) and, critically, detailed the complex spatio-
temporal preprocessing required to unify satellite, IoT, and field report data. The 
framework's ability to forecast specific hazards such as AMD contamination and 
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geotechnical failures provides the technical foundation for a proactive environmental 
management paradigm. 

This study provides actionable recommendations for key stakeholders. Government 
agencies and regulators should accelerate the adoption of AI-based monitoring systems, 
integrating predictive analytics into regulatory requirements like the AMDAL process to 
improve governance. The mining industry must view investment in digital infrastructure 
(IoT, AI) as a core component of operational risk management and Environmental, Social, 
and Governance (ESG) commitments. Finally, academic institutions must collaborate with 
industry to update curricula, bridging the digital talent gap required to operate and maintain 
these advanced socio-technical systems. 

EcoRisk-AI, as a conceptual framework, faces structural limitations. These include the 
significant "cold start" problem due to insufficient high-resolution historical data for model 
training, the high implementation cost of industrial-grade sensors, and the risk of domain-
shift penalties when applying a model trained in one geological province such as Kalimantan 
coal to another such as Sulawesi laterite. Furthermore, the system's impact is socio-
technical, its predictive intelligence only creates value if embedded within institutional 
procedures that mandate preventive action. 

Future research should focus on overcoming these barriers. The development of low-
cost, reliable sensors is a critical path forward to democratize access to this technology. 
Model scalability presents another frontier, future work should investigate federated 
learning techniques to train regional or national models without centralizing sensitive site 
data. This path is essential for creating a comprehensive, interconnected national 
monitoring network. 
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