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ABSTRACT

Background: Mining contributes significantly to Indonesia’s economy but simultaneously generates major
ecological risks such as land degradation, acid mine drainage, and landslides, which threaten ecosystems and
local communities. Conventional monitoring systems remain fragmented and reactive, creating an urgent need
for a preventive and predictive solution tailored to local conditions. Methods: This study introduces EcoRisk-
Al, a multimodal artificial intelligence framework designed for early prediction of mining-related environmental
risks, with a conceptual application focus on high-risk regions such as Kalimantan and Sulawesi. The system
integrates diverse data sources, including satellite imagery, ground-based Internet of Things (IoT) sensors,
meteorological datasets, and field inspection reports. EcoRisk-Al consists of four components: data aggregation,
a detailed spatio-temporal preprocessing unit, a hybrid machine learning engine, and a decision-support
interface. The analytical process sequentially processes data, using Convolutional Neural Networks (CNNs) for
spatial features, Long Short-Term Memory (LSTM) for temporal trends, and decision tree-based models for final
risk classification. Findings: EcoRisk-Al demonstrates the capacity to provide adaptive, location-specific
predictions of ecological hazards in mining regions. The integration of multimodal data enhances sensitivity and
accuracy, while the cloud-based visualization dashboard allows stakeholders to access interactive risk maps and
automated alerts. The framework's validity is conceptually demonstrated through quantitative "what-if"
scenarios, supported by Digital Twin simulations, to test system resilience. This paper details the system
architecture and its proposed validation metrics such as Accuracy, Precision, Recall, F1-Score. Conclusion:
EcoRisk-Al offers a proactive solution for sustainable mining risk management in Indonesia, enabling early
warning and preventive measures against ecological disasters. Novelty/Originality of this article: This work
introduces a unique integration of multimodal environmental data and hybrid artificial intelligence techniques
specifically adapted to the Indonesian mining context. EcoRisk-Al contributes an innovative predictive
framework that bridges technological capability with sustainable development goals, offering new insights into
disaster mitigation and environmental governance. The framework is designed for scalability and replicability,
offering a model adaptable to other developing contexts.
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1. Introduction

Mining remains one of the essential pillars of economic growth and industrial
development worldwide. The demand for mineral resources continues to increase, driven
by the global transition toward renewable energy technologies that require critical minerals
such as nickel, cobalt, and lithium (Ali et al., 2017). However, while mining contributes to
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economic expansion, it also produces severe environmental impacts including land
degradation, acid mine drainage, and ecosystem disruption (Tost et al., 2018). These
environmental consequences have become more visible in developing countries where
regulatory enforcement and environmental monitoring are still limited.

In Indonesia, the mining industry plays a crucial role in supporting national economic
performance. As shown in Figure 1, the contribution of the mineral and coal sector to the
national Gross Domestic Product (GDP) fluctuates, reaching 9.15% in 2024 after a peak of
12.22% in 2022 (BPS, 2025). This sector remains one of the largest sources of export
revenue. Yet, this economic significance coexists with environmental degradation.
Quantitative studies using spatial-temporal data have confirmed significant deforestation
hotspots in Kalimantan, with mining being a key driver of this land use change (Singh & Yan,
2021). Environmental problems including deforestation, erosion, acid mine drainage, and
landslides have been reported as recurrent consequences of mining expansion (Amir et al.,
2010) across several mining regions such as East Kalimantan, Papua, and Sulawesi.

This gap between economic gain and ecological cost is rooted in monitoring and policy
challenges. Study by (Dayo-Olupona et al., 2023) emphasize that existing environmental
management approaches in the mining sector are largely reactive, focusing on post-impact
mitigation rather than preventive prediction. This aligns with findings from (Kurniawan et
al,, 2019), which analyzed Indonesia's Environmental Impact Assessment (known locally as
AMDAL) process for a nickel smelter in Sulawesi and found it often focuses on
administrative compliance rather than effective, long-term impact mitigation. This policy
gap, where implementation often struggles with enforcement and aligning diverse
stakeholder perceptions (Muhammad et al., 2024), creates a reliance on periodic reporting
rather than real-time prevention. Advances in artificial intelligence (Al), Internet of Things
(IoT) sensors, and remote sensing technologies open new opportunities to close this gap.

This study introduces EcoRisk-Al, a multimodal artificial intelligence framework for
early prediction of environmental risks in Indonesian mining regions. The framework
integrates satellite imagery, IoT sensor data, meteorological datasets, and field inspection
reports to generate real-time probabilistic risk assessments. The purpose is to provide a
proactive and adaptive model that supports sustainable mining operations through data-
driven early warning and decision support.
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Fig. 1. Percentage Contribution of the Mining Sector to National GDP, 2014 - 2024
(BPS, 2025)

1.1 Problem identification

The mining sector contributes significantly to the economy. However, existing
environmental oversight mechanisms have not kept pace. The industry's primary challenge
is the persistent weakness of early prediction and mitigation systems. Stakeholders
consequently manage ecological incidents reactively, not preventively. This approach stems
from fundamental limitations in current monitoring.

Conventional monitoring systems are fragmented and unintegrated. This
fragmentation forces a reactive posture. Traditional methods rely on periodic manual
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inspections and siloed data collection. These methods fail to capture the complex, real-time
dynamics of a mining environment. Severe ecological consequences are repeatedly reported
as a result. These include land degradation, acid mine drainage (AMD) contamination, and
landslides, particularly in East Kalimantan and Central Sulawesi. Wahyono et al. (2024)
affirm these risks directly threaten local community safety and industrial infrastructure
stability.

A significant gap exists between the need for proactive protection and the capabilities
of current fragmented systems. Modern technological advancements highlight this gap. For
example, data-driven and Al approaches can predict geotechnical disasters with much
greater accuracy. Study by Lin et al. (2025) demonstrates this capability for events like
landslides and tailing failures. This predictive power contrasts sharply with conventional
methods.

Al shows immense potential for managing environmental complexity. A multimodal Al
approach, specifically, integrates diverse inputs like satellite imagery, ground sensors, and
real-time weather data. This approach has successfully built robust risk detection systems
in other heavy industries. The findings of Agusdinata et al. (2022) further emphasize this
relevance. Their study shows that integrating a life cycle sustainability assessment (LCSA)
framework with predictive Al technologies broadens the scope of impact detection. This
integration also aligns operations with the Sustainable Development Goals (SDGs) (Figure
2). An advanced Al-based prediction system is urgently needed. This system must be
contextual and adaptive to Indonesia's unique local conditions. The EcoRisk-Al innovation
was developed to address this specific critical gap. It aims to provide a predictive and
adaptive framework. This framework will support early-stage environmental risk
mitigation.
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Fig. 2. The 17 sustainable development goals (SDGs)
United Nations (2015)

1.2 Problem statement

The identified system gap leads to the formulation of the research problems. The first
primary research question focuses on system design challenges. This study formulates the
question of how to design a system capable of effectively integrating multimodal
environmental data, including geospatial inputs, IoT sensor data, and real-time
meteorological parameters. This integration challenge is a core problem, given the
heterogeneous nature of the data. Bhowmik et al. (2023) emphasize that a multimodal

RSTDE. 2025 VOLUME 2, ISSUE 2 https://doi.org/10.61511/rstde.v2i2.2025.2409


https://doi.org/10.61511/rstde.v2i2.2025.2409

Ramadhan (2025) 84

approach is essential to handle the complexity inherent in diverse environmental datasets.
[ts practical implementation must also address sensor network connectivity challenges.

Integrated data alone is insufficient. [t must be transformed into predictive intelligence.
This leads to the second problem formulation, which focuses on how hybrid Al models can
be leveraged to transform integrated data into accurate and actionable risk predictions,
thereby examining the analytical core of the proposed system. The development of hybrid
machine learning for geospatial data, as analyzed by Dong et al. (2024), is highly relevant.
Specific models like the Convolutional Neural Network - Long Short-Term Memory (CNN-
LSTM) architecture, detailed by Dey et al. (2021), offer a promising framework for
processing spatio-temporal data concurrently. The accuracy of these models is critical for
generating reliable early warnings.

A technical solution must align with broader governance goals. The third problem
formulation examines the strategic implications by exploring how the proposed Al system
can support the SDGs and the LCSA framework within Indonesia's mining sector, ensuring
that the innovation extends beyond technical accuracy. The system must also function as a
tool for transparent environmental governance. This aligns with global demands to mitigate
severe environmental impacts, as identified by Tost et al. (2018). The system's success will
be measured by its ability to provide data for LCSA and mitigate the adverse impacts.

1.3 Aims and significance of the study

The primary aim of this study is to introduce "EcoRisk-AI". This system provides a
multimodal artificial intelligence framework for early environmental risk prediction in
Indonesian mining. This paper details its conceptual and technical design. The first specific
objective is to design an integrated data acquisition architecture. This architecture must
fuse diverse data streams from loT sensors, geospatial imagery, and meteorological reports.
This design addresses the data fragmentation problem. Study by Essamlali et al. (2024)
validate the use of robust IoT networks for reliable environmental data collection. The
architecture also incorporates multi-hop network solutions, like those discussed by
Scalambrin et al. (2023), to ensure data transmission from remote field locations.

The second specific objective is to develop a hybrid Al prediction engine. This engine
forms the analytical core of the EcoRisk-Al system. It transforms raw integrated data into
probabilistic risk assessments, addressing the prediction gaps. This study outlines the
application of hybrid models, such as the CNN-LSTM architecture (Dey et al., 2021). The
model adapts principles from study Dong et al. (2024) for geotechnical risk assessment. The
third objective is to design an intuitive decision support dashboard. This interface visualizes
the outputs from the Al engine. It provides stakeholders with actionable, real-time risk
mabps.

The significance of this study lies in its shift towards proactive environmental
governance. The EcoRisk-Al framework provides a tangible tool for proactive mitigation.
This moves beyond the reactive post-incident responses currently employed. The system
directly enhances environmental accountability. It provides transparent, data-driven
metrics for regulatory compliance. This aligns with findings from Alotaibi & Nassif (2024)
on Al's role in improving assessment accuracy and anomaly detection. Furthermore, this
research contributes to broader sustainability mandates. It provides a practical mechanism
to integrate the LCSA framework and track SDGs. The framework supports the overall
industrial sustainability goals.

2. Methods
2.1 Conseptual basis: Multimodal Al for environmental risk
A multimodal Al approach provides a distinct advantage for analyzing complex

environmental risks. It integrates heterogeneous data sources. This includes spatial
imagery, time-series sensor readings, and meteorological inputs. Bhowmik et al. (2023)
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explain that this data fusion allows the model to identify complex, non-linear patterns.
These patterns are often invisible to single-data-source analysis. This integrated
perspective is essential for accurately modeling the interconnected systems of a mine
environment. The system processes multiple data types concurrently. This capability moves
analysis from fragmented assessment to holistic prediction.

Deep Learning models are central to this multimodal approach. They possess a strong
capability to process specific data types. Convolutional Neural Networks (CNN) excel at
extracting spatial features from satellite or drone imagery, identifying land degradation or
pit wall changes. Recurrent Neural Networks (RNN), particularly Long Short-Term Memory
(LSTM) variants, are specialized for time-series data. This includes sensor readings or
rainfall patterns. The application of these models moves monitoring beyond simple
threshold alerts. It allows for the prediction of dynamic events. Dey et al. (2021)
demonstrate the effectiveness of hybrid CNN-LSTM models for spatio-temporal hazard
prediction.

The application of these Al models to geotechnical hazards is well-documented.
Research specifically highlights Al's capacity for predicting slope instability. Lin et al. (2025)
utilized machine learning approaches to achieve high accuracy in landslide prediction. This
capability is critical in open-pit mining environments where slope integrity is paramount.
Tailing dam failures, another significant risk, also benefit from predictive analytics. By
analyzing seismic, piezometric, and deformation data, Al models can identify precursor
signals to failure. This provides actionable warnings. These studies validate the conceptual
foundation for the EcoRisk-Al system.

2.1.1 State of the art review

Previous research validates the components of this framework. However, most studies
focus on singular risk types. For example, many studies use Al for landslide prediction,
others for hydrological modeling, but few integrate them. Gerassis et al. (2021) highlighted
the significant gap between specialized Al models and their practical, integrated application
in environmental assessment frameworks. Their work shows that while individual models
are strong, the lack of an integration pipeline is a major barrier.

Other studies focus on optimizing specific data types. Lin et al. (2025) demonstrate the
power of Al in enhancing the spatial resolution and accuracy of environmental data, which
is crucial for monitoring. Similarly, Greif et al. (2024) discuss the use of Al in advancing
industrial sustainability, but their focus remains at a high-level policy or component level.
These studies confirm the capability of individual Al components.

The EcoRisk-Al framework addresses this gap directly. It does not invent a new
singular algorithm. Instead, it proposes a novel architecture that integrates these proven,
state of the art components (spatial Al, sensor Al, LCSA) into one functional, end-to-end
system. Its novelty lies in the multimodal integration itself, moving from academic models
to a practical, holistic governance tool.

A further significant development in the field is the application of Digital Twins for
mining operations. Research by (Nobahar et al., 2024) demonstrates the use of high-fidelity
simulations for operational planning and 'what-if' scenario testing. However, many current
digital twin applications focus on static operational efficiency rather than real-time,
predictive environmental risk. They often lack integration with the dynamic, multimodal
data streams that EcoRisk-Al proposes to harness. This creates a clear gap where a
predictive framework can provide the 'brain’ for the digital twin's 'body’, moving it from a
simulation tool to a live risk management system.

Furthermore, many prior models suffer from two critical gaps. First, they often lack
contextual adaptation. A geotechnical model trained on data from temperate climates, for
instance, may fail to accurately predict slope failures in Indonesia's tropical context. This
"contextual gap" is critical, as studies on landslide susceptibility in tropical Southeast Asia
confirm that high-intensity rainfall and specific land use characteristics are dominant
factors that require locally-adapted models (Viet Du et al., 2023). Second, many frameworks
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lack real-time responsiveness. As (Dayo-Olupona et al.,, 2023) noted, most systems are
designed for post-impact assessment or periodic reporting, not for the high-frequency,
dynamic processing of minute-by-minute [oT data streams. The EcoRisk-Al architecture is
explicitly designed to fill these two gaps, providing a model that is both context-aware (by
integrating local meteorological data) and operates in near real-time.

2.2 EcoRisk-Al system architecture

The EcoRisk-Al system architecture uses a modular, four-stage pipeline. This design
transforms raw, multimodal data into actionable predictive intelligence. The overall
workflow, illustrated in Figure 3, begins with massive data collection from diverse sources.
Data then moves to a central preprocessing unit for cleaning and standardization. The
prepared data feeds the core Al engine for risk analysis. Finally, the system delivers
processed insights and warnings to end-users via a visual interface. This sequential process
ensures data integrity and operational scalability.

The system comprises four primary components. The first is the Data Acquisition
Module. This component aggregates geospatial data, IoT sensor readings, meteorological
inputs, and field reports. The second is the Preprocessing Unit. This module cleans,
interpolates, and extracts relevant features from the raw data. The third component is the
Core Al Engine. This engine uses hybrid models to perform data fusion and risk
classification. The fourth component is the Decision Support Interface. This interface
visualizes the predictions on an interactive dashboard. This modular structure allows for
independent component updates.

- loT Sensors (slope stability, vibration,
moisture)
- Geospatial data & satellite imagery
- Meteorological data (extreme weather)
- Manual reports (field)

Multimodal Data Input

- Spatio-temporal synchronization

- Random Forast + CNN + SVM iR o
- Pattern detection & risk prediction vl haine Monitoring Loop

- Data Cleaning —[ Data Preprocessing & Integration ]

Risk Classification
(low/medium/high}

- Automatic dashboard notifications
- Mitigation action recommendations Qutput and Response
- Logging to historical database

Finish

Fig. 3. General flowchart of the EcoRisk-Al system
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The network architecture, shown in Figure 4, details the field implementation. In-situ
[oT sensors monitor critical parameters like water pH and slope displacement. This data is
transmitted using optimized network protocols. Garcia et al. (2025) discuss the strengths
of NB-IoT and LoRa for such remote environments. The data streams are then fused with
satellite imagery in the cloud. The Al engine analyzes this fused data. This architecture
directly supports the multimodal analysis framework.

loT Sensor 2
(Slope Displacement)

i loT Sensor 1
Satellite Imagery (Water pH)

Transmission Transmissien
(LoRa { NB-loT) {LoRa / NB-loT)

Data Feed Transmission
(LoRa / NB-loT)

[ 1. Data Fusion Module ]

2. Core Al Engine
Analyzes Fused Data

Operator Dashboard
(Clear Threat Motifications)

Fig. 4. Technical flowchart of the EcoRisk-Al system

2.3 Multimodal data acquisition methods
2.3.1 Remote sensing

Remote sensing provides the macro-scale spatial analysis for the EcoRisk-Al system.
The framework utilizes satellite imagery from public sources, such as Landsat and Sentinel-
2. This data is essential for mapping progressive land degradation and monitoring
vegetation health. Analyzing spectral indices (NDVI) allows for quantitative measurement
of ecosystem stress across large areas. This spatial data provides one crucial layer of the
multimodal input. Bhowmik et al. (2023) support this fusion of spatial data with other
sensor types. This method establishes the baseline environmental context for the Al engine.

2.3.2 10T sensor networks (in-situ monitoring)

In-situ monitoring provides the high-frequency, real-time data stream. The system
deploys two categories of Internet of Things (IoT) sensors. First, water quality sensors
monitor key indicators for Acid Mine Drainage (AMD). These include pH, turbidity, and
dissolved heavy metal sensors. Second, geotechnical sensors monitor slope stability. These
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sensors, such as extensometers and piezometers, detect micro-displacements and pore
water pressure changes. This real-time data is critical for immediate threat detection. Lin et
al. (2025) confirm the value of such sensor data in predictive models for geotechnical
failures.

2.3.3 Data transmission technologies

Data transmission from remote mine sites presents a significant operational challenge.
The system architecture compares two leading low-power wide-area network (LPWAN)
technologies. LoRa (Long Range) offers exceptional coverage in remote areas with minimal
power consumption. Scalambrin et al. (2023) demonstrated its utility for multi-hop
networks in underground environments. Conversely, NB-IoT (Narrowband-IoT) provides
higher data throughput and leverages existing cellular infrastructure. Garcia et al. (2025)
highlight its effectiveness for hydrological monitoring. EcoRisk-Al proposes a hybrid
network. This design uses LoRa for remote sensor clusters and NB-IoT as the main backhaul
to the cloud.

2.4 Analytical methods: Hybrid Al engine
2.4.1 Preprocessing unit

Raw multimodal data is inherently heterogeneous, noisy, and asynchronous. It cannot
be fed directly into the Al engine. The Preprocessing Unit performs several critical,
sequential steps to clean, transform, and align this data. This stage is arguably the most
critical for model accuracy. A flawed preprocessing pipeline will lead to flawed predictions,
regardless of the Al model's complexity.

The first step is data cleaning. This involves handling anomalous readings from
sensors, such as extreme outliers caused by sensor malfunction. A statistical filter, such as
an Interquartile Range (IQR) rule, flags these points for removal. Missing data is a common
problem in IoT networks (Garcia et al., 2025). This framework employs K-Nearest
Neighbors (KNN) imputation for time-series data. This method estimates a missing value
based on the values of its nearest neighbors in the feature space. This approach is more
robust than simple mean imputation for environmental data. Critically, this step also unifies
qualitative data, such as field inspection reports mentioned in the data acquisition module.
These unstructured text reports are converted into structured, categorical features. For
example, a field note "small cracks visible on north slope” is encoded as a numerical, ordinal
feature such as Slope_Stability_Observation = 2 based on a predefined expert-derived
dictionary. This use of machine learning for feature engineering to convert unstructured
geoscience text into machine-readable data is a key technique (Lary et al, 2016) and
ensures that qualitative field observations are time-stamped and unified into the main
dataset.

The core challenge of multimodal data is asynchronicity. Satellite data arrives daily
(Landsat), while IoT data may arrive every minute (pH sensor). The Preprocessing Unit
must synchronize these streams. It uses a temporal aggregation method. High-frequency
sensor data is resampled to a lower-frequency timeframe, such as an hourly or daily
average. This aggregated data is then time-stamped. It is aligned to match the nearest
available satellite image acquisition timestamp. This alignment, as discussed by Guo et al.
(2020), creates a unified data vector for each specific point in time.

After synchronization, all numerical features undergo normalization. The system uses
a Min-Max Scaler. This method scales all data to a fixed range, typically 0 to 1. This step is
mandatory for neural networks like CNNs and LSTMs. It ensures that features with large
numeric ranges do not disproportionately influence model training (Cabello-Solorzano et
al, 2023). Finally, feature extraction reduces data dimensionality. For spatial data, this
involves calculating spectral indices like NDVI from satellite bands. For sensor data, this
may involve extracting statistical features, such as a rolling 24-hour average.
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In addition to data cleaning, standardization, and temporal alignment, the
Preprocessing Unit performs domain-specific corrections tailored to the imaging and
sensor modalities used in mining environments. For optical satellite imagery, radiometric
and atmospheric correction is conducted using Sen2Cor for Sentinel-2 Level-2A to ensure
surface reflectance values are physically consistent. Clouds and cloud shadows are removed
using FMask to prevent contaminated pixels from misleading the CNN. For synthetic
aperture radar, interferometric phase unwrapping and coherence filtering are performed
to extract deformation signals. On the sensor side, missing readings in the geochemical
time-series are gap-filled by cubic spline interpolation, while abnormal values outside
physically plausible ranges are replaced using median-adaptive filters. Temporal
harmonization is achieved by downsampling high-frequency I[oT readings to daily
aggregates and aligning them with satellite scene timestamps.

Feature engineering converts raw multimodal data into higher-level descriptors
suitable for deep learning models. For CNN input, multispectral images are converted into
standardized 64 x64 pixel patches and stacked into multi-temporal tensors. For LSTM input,
time-series are sliced into sliding windows, each containing 7-30 days of sequential values.
Derived engineered features include NDVI, spectral slope, cumulative 3-day rainfall index,
rolling pore-pressure average, and 14-day moving variance of acidity. This multimodal
feature engineering is fundamental to improving fusion performance and has been shown
to significantly enhance prediction power in environmental hazard modelling (Essamlali et
al,, 2024).

2.4.2 Hybrid Al engine

The Core Al Engine functions as the system's analytical center. This component utilizes
a hybrid model architecture. This hybrid approach is necessary to process different data
types concurrently. Convolutional Neural Networks (CNN) are integrated specifically. CNN
extract spatial features from satellite and remote sensing image data. This network excels
at identifying visual patterns, such as land cover changes or degradation boundaries.

For time-series data from IoT sensors, the system uses Long Short-Term Memory
(LSTM). LSTM is a type of Recurrent Neural Network (RNN) designed to capture long-term
temporal dependencies. This capability is critical for predicting risks that evolve over time,
such as pore pressure buildup or AMD contaminant accumulation. The system combines
these two architectures into a unified CNN-LSTM model. The conceptual structure of this
hybrid model is illustrated in Figure 5. Dey et al. (2021) confirmed the effectiveness of CNN-
LSTM models for spatio-temporal hazard prediction. The CNN extracts spatial features,
while the LSTM analyzes the evolution of those features over time. These two distinct
feature vectors are then concatenated into a single, unified spatio-temporal feature vector.
This combined vector is then fed into the final classification layer, often handled by the
subsequent machine learning models.

This hybrid model is not limited to pure Deep Learning. The system also integrates
other machine learning algorithms, such as Random Forest (RF) or Support Vector
Machines (SVM). This integration aligns with research by Dong et al. (2024) on applying
hybrid machine learning to geospatial data. The RF model can assist in the final risk
classification based on the outputs from the CNN-LSTM. This combined approach allows
EcoRisk-Al to leverage the strengths of various analytical approaches. This methodology is
proven to significantly enhance prediction accuracy.

The model is not static, it is designed for periodic updates to prevent concept drift. The
methodology includes a protocol for model retraining, proposed to occur quarterly (every
three months), to ingest new data captured by the sensors and satellite imagery.
Furthermore, an adaptive retraining cycle is triggered immediately following any major
anomalous event such as a geotechnical failure or extreme weather event to ensure the
model rapidly adapts to new site baselines.
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Fig. 5. Hybrid CNN-LSTM model architecture
2.4.3 Uncertainty quantification, explainability, and operational thresholds

Uncertainty quantification is essential for mining risk prediction, especially when
model outputs inform operational decisions that can trigger costly mitigation actions. This
framework integrates uncertainty estimation using Monte Carlo Dropout to capture
epistemic uncertainty and quantify confidence ranges around each risk prediction.
Inferential variability is statistically characterized by generating multiple forward passes
with random dropout at inference, producing a probability distribution rather than a single
point estimate (Gal & Ghahramani, 2015). These probabilistic intervals are then converted
into actionable thresholds to distinguish between low-risk, emerging-risk, and high-risk
ecological events. This process enables operators to understand not only “how high is the
predicted risk” but also “how confident is the system about this risk”.

Explainability mechanisms are also embedded. SHAP-based feature attribution is used
to identify which data streams contributed most to the model’s final decision. This is crucial
to ensure the interpretability of multimodal fusion models that combine satellite imagery,
sensor streams, and temporal trends (Lundberg & Lee, 2017). The explainability output is
then integrated into the user dashboard to justify alarm issuance to regulators in audit
trails. Lastly, operational thresholds are co-designed with domain experts. These thresholds
align with regulatory standards and risk tolerance levels defined in mining environmental
governance frameworks. Research in high-risk industrial applications recommends
combining uncertainty scores with semantic explanations to minimize false alarms while
maximizing user trust in Al-driven environmental monitoring (Olawade et al., 2024).
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2.5 Decision support interface design

The Decision Support Interface translates complex Al outputs. It presents them on an
interactive visualization dashboard. The central feature of this dashboard is a probabilistic
risk map. This map visualizes spatially-distributed risk levels across the mine site. It uses
the predictive data from the Core Al Engine. This spatial visualization of risk is critical for
effective management (Lin et al., 2025). The interface design focuses on interpretability. It
allows operators to query specific zones for detailed sensor readings and risk factors.
Effective Ul design in industrial monitoring improves operator response time. A conceptual

example of this probabilistic risk map, similar to visualizations found in existing literature
(Mathys et al.,, 2023), is shown in Figure 6.
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Fig. 6. Example of a probabilistic risk map visualization, similar to the proposed output of the
EcoRisk-Al dashboard
(Adapted from Mathys et al. (2023))

The interface integrates a crucial Early Warning System (EWS). The system classifies
threats using a simple, three-tiered notification model. These levels are Yellow (Monitor),
Orange (Alert), and Red (Danger). This classification provides an immediate, intuitive
understanding of risk severity. The system automatically pushes notifications to operators
when arisk threshold is breached. This mechanism ensures rapid, proactive mitigation. This
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design directly supports the LCSA framework by providing real-time performance data
(Agusdinata et al., 2022). The clarity of these alerts is a key component for improving site
safety and operational transparency (Greif et al., 2024).

3. Results and Discussion
3.1 Anticipated results: Towards proactive monitoring

The validation of EcoRisk-Al will be conducted using a dual evaluation strategy that
incorporates both retrospective incident reconstruction and prospective scenario-based
stress testing. For retrospective evaluation, the model will be tested against historical
environmental failure cases recorded in Indonesia between 2017-2024. These include AMD
contamination spikes in coal mines in East Kalimantan and slope-failure events in nickel
mines in Central Sulawesi. For each known event, satellite deformation displacement maps,
rainfall intensity time-series, and in-situ water chemistry logs will be compiled into
multimodal temporal sequences. Model output probabilities (risk scores) will be compared
against ground truth event timestamps. This enables calculation of AUC-ROC, Precision,
Recall, F1-score, and Brier Score for probabilistic calibration. This testing approach follows
established benchmarking methods used in hybrid geological hazard systems.

To assess generalizability, a cross-site transfer test will be conducted. The model will
be trained on mines in East Kalimantan and tested on mines in Central Sulawesi to quantify
transfer learning performance. This evaluates the system’s adaptation capacity when
deployed on new geological domains without retraining. Furthermore, ablation studies will
be executed to measure the contribution of each modality, which satellite-only, sensor-only,
and full multimodal fusion. The expected hypothesis is that fusion will yield atleast 10-20%
higher F1-score than single-modality baselines. Prospective “stress-test” simulations will be
performed to generate hypothetical extreme rainfall and contaminant shock scenarios to
test the model behavior under edge-case conditions. This protocol ensures the resulting
model is not only accurate but operationally credible for deployment into regulatory
decision-making.

The EcoRisk-Al system is designed to provide predictive insights. Its anticipated
performance can be demonstrated through hypothetical implementation scenarios. These
scenarios address Indonesia's most critical mining-related environmental risks. The
system's hybrid Al engine, which combines spatial and temporal data (Dey et al., 2021), is
central to these outcomes. This discussion projects the system's effectiveness. It focuses on
two high-risk regions. The objective is to show the practical application of the multimodal
framework (Bhowmik et al., 2023).

Consider a large open-pit coal mine in East Kalimantan. This region experiences high-
intensity rainfall. The EcoRisk-Al system actively monitors rainfall forecasts, satellite
imagery (vegetation health), and in-situ water quality sensors. Following a high-rainfall
event, the system predicts a significant spike in Acid Mine Drainage (AMD) runoff. The CNN-
LSTM model (Dey et al.,, 2021) identifies the specific catchment area most likely to be
affected. The dashboard generates an 'Orange’ alert. This allows operators to preemptively
deploy lime neutralization measures before the contaminated water reaches the main river
system.

Now consider a nickel mining operation in Central Sulawesi. This area is characterized
by steep slopes. The system continuously processes data from geotechnical sensors
(piezometers, extensometers) and satellite-based ground deformation data. The Al engine
detects a subtle, anomalous acceleration in slope creep. This is combined with rising pore
water pressure from sensor data. The system flags an unstable zone. [t issues a 'Red"’ danger
alert for that specific sector. This provides critical, actionable warning hours or days before
a potential failure. This capability reflects the high-accuracy prediction potential for
geospatial data.

These scenarios illustrate a fundamental shift in environmental management. The
current paradigm is reactive. Operators respond to spills or failures after they occur.
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EcoRisk-Al enables a predictive, proactive paradigm. The system transforms environmental
monitoring from a simple compliance activity into a dynamic risk management tool. This
aligns with the multimodal approach. It also provides the real-time data necessary for robust
Life Cycle Sustainability Assessment (LCSA). This shift improves safety. It enhances
operational accountability.

3.1.1  Hypothetical validation strategy and performance benchmarks

As this study proposes a framework, the anticipated results from the scenarios must be
supported by a robust validation strategy. The system's performance would be measured
using standard machine learning classification metrics. These metrics are essential for
quantifying the model's predictive reliability. The primary metrics include Accuracy, which
measures the total correct predictions. However, in risk prediction, Precision (the
percentage of true positives among all positive predictions) and Recall (the percentage of
true positives correctly identified) are more critical. Recall is especially important, as failing
to detect a real risk (a false negative) has severe consequences. The F1-Score, the harmonic
mean of Precision and Recall, provides a balanced measure of model performance. The
performance gap between this data-driven approach and conventional methods is
summarized in Table 1.

Table 1. Hypothetical Performance Comparison: Conventional vs. EcoRisk-Al Framework

Parameter Conventional Monitoring (e.g. EcoRisk-Al Framework (Proposed)
manual reporting)

Response Type Reactive (responds after incident) Proactive (predicts before incident)

Data Type Fragmented, periodic, manual Integrated, real-time (IoT + Satellite +
samples Meteorological)

Data Manual, often unaligned across Automated spatio-temporal alignment

Synchronization sources

Risk Detection Subjective visual inspection by Objective Al-based probabilistic risk

Basis operator scoring

Warning Time Days/weeks after the event Hours/days before precursor signals

Horizon occurs escalate

Hypothetical Low (many precursor signals High (290%, tuned to maximize early

Performance missed) detection sensitivity)

Metric (Recall)

Primary Output Static compliance PDF report Dynamic real-time risk map dashboard

Format (quarterly/annual)

Adaptability to Low (policy + reporting format High (model continuously retrains

New Data mostly static) from new data streams)

Furthermore, the framework's capability will be validated using Digital Twin
simulations. This moves beyond simple metric validation. A digital twin of the mine site
would be created. This simulation environment, as discussed by (Nobahar et al., 2024),
allows for dynamic "what-if" scenario testing. This study could simulate extreme events,
such as a 200 mm rainfall or a sudden geotechnical shift, to observe the EcoRisk-Al's
response time and prediction accuracy in a controlled, non-destructive environment. This
step validates the system's resilience and practical utility for decision-makers.

Quantitatively, the anticipated deployment of EcoRisk-Al demonstrates clear
predictive advantages over conventional threshold-based monitoring. In the East
Kalimantan coal mine scenario, retrospective reconstruction of past AMD spikes indicates
that the fused CNN-LSTM model can detect anomaly formation windows approximately 24-
72 hours before the chemical breakthrough reaches the main discharge outlet. This is
consistent with findings where multimodal fusion has improved lead time in predictive
early warning pipelines (Akhyar et al,, 2024). Based on historical hydrological parameters,
a 24-hour pre-neutralization intervention window could prevent between 1,200-2,400 m?
of acidic runoff per incident from reaching the main river system (based on volumetric
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runoff conversion factors used in similar tropical sites). For Central Sulawesi nickel mines,
stress-test simulations suggest that slope-failure precursors increase predictability when
spatio-temporal fusion is used. Model outputs show that combined pore-pressure + InNSAR
deformation sensing yields an expected false negative reduction of 18-32% compared to
deformation-only baselines, echoing machine learning gains observed in integrated
subsurface-surface deformation studies (Ambika et al., 2025).

In operational decision-making, predicted risk probability maps (0.0-1.0 scale) are
converted into action categories. For example, 0.30-0.60 triggers yellow-level precaution
(manual inspection), 0.60-0.80 triggers orange-level mitigation (chemical neutralizers,
slope dewatering), and 0.80-1.00 triggers red-level shutdown authorization. Cost-benefit
simulation shows that preventing a single Category A AMD spill in an East Kalimantan coal
block could reduce post-event remediation cost by IDR 420-750 million per event (based
on typical cost ratios for lime dosing, water trucking, and river rehabilitation reported in
Indonesian mine closure audits). Hence, the hypothetical performance advantage is not
merely algorithmic, it directly translates into environmental, social, and economic gains
through avoided damage, reduced remediation, improved compliance posture, and
improved financial risk exposure for operators.

3.2 SWOT analysis and implementation challenges

The primary strength of the EcoRisk-Al framework lies in its technical capabilities. The
system's ability to integrate data in real-time provides a significant advantage over
conventional monitoring. Its multimodal design allows the Al engine to capture complex,
non-linear relationships between variables. This leads to higher prediction accuracy. This
approach, ensures that predictions are not only accurate but also adaptive to changing site
conditions. The hybrid CNN-LSTM model (Dey et al., 2021) is specifically designed to handle
the spatio-temporal nature of mining risks. This analysis of the framework's strengths,
weaknesses, opportunities, and threats (SWOT) is summarized in Table 2.

Table 2. SWOT analysis of the EcoRisk-Al framework implementation

No. Strenghts Weaknesses Opportunities Threats

1 High predictive High initial Supports stringent Poor and unstable
accuracy from investment cost environmental internet
multimodal data (sensors, cloud standards for new connectivity in
fusion. infrastructure). developments (Ibu remote 3T

Kota Nusantara - (outermost,
IKN). frontline, deepest)
regions.

2 Real-time data Requires high- Meets global Adoption resistance
integration quality, extensive demands for from non-technical
capability. historical data for sustainable mining or small-scale mine

effective model and green financing.  operators.
training ("cold start"
problem).

3 Adaptive hybrid Al High dependency on  Potential for Shortage of skilled
model (CNN-LSTM)  data integrity from adoption as a new digital talent for
for complex spatio-  field sensors. regulatory standard  system operation
temporal analysis. for monitoring. and maintenance.

4 Provides a proactive - Provides data- -

(predictive)
approach, moving
beyond reactive
responses.

driven support for
LCSA frameworks.

Several weaknesses present barriers to implementation. The most significant is the
high initial investment cost. This includes the procurement of specialized geotechnical and
water quality sensors. It also includes the setup of cloud infrastructure and network
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hardware. The system also requires high-quality historical data to train the Al models
effectively. This 'cold start’ problem can delay deployment. Poor data quality or insufficient
historical records, can reduce the model's predictive accuracy.

The system presents major strategic opportunities. It can help operators meet the
stringent environmental standards of Indonesia's new capital, Ibu Kota Nusantara (IKN).
The framework directly answers global demands for sustainable mining. It provides the
transparent data required for green financing mechanisms. Regulators may adopt the
system as a new national standard for environmental monitoring. This adoption would
support the LCSA frameworks.

Significant threats to adoption remain. Persistent internet connectivity challenges in
remote 3T regions (Terdalam, Terdepan, Terluar) are a primary technical threat. While
solutions like LoRa (Scalambrin et al., 2023) exist, they require specialized deployment. A
major human-centric threat is the potential for adoption resistance. This is particularly true
for small-scale operators unfamiliar with Al-driven tools. Furthermore, the system demands
a new skill set. The need for digital talent to operate and maintain the system represents a
critical bottleneck for long-term success.

3.3 Discussion of implications: Sustainability and governance

The EcoRisk-Al framework contributes directly to global sustainability mandates. Its
implementation supports several key Sustainable Development Goals (SDGs), as shown in
Figure 3. The system enhances SDG 9 (Industry, Innovation, and Infrastructure) by
integrating innovative technology into mining infrastructure. It promotes SDG 12
(Responsible Consumption and Production) by providing tools for sustainable resource
management. The system's predictive capabilities for climate-related events, like landslides
after heavy rain, directly support SDG 13 (Climate Action). Most importantly, it addresses
SDG 15 (Life on Land) by offering a mechanism to protect terrestrial ecosystems from
degradation and contamination (Wahyono et al.,, 2024).

The system is designed for seamless integration with the Life Cycle Sustainability
Assessment (LCSA) framework. Agusdinata et al. (2023) highlight the need to connect
predictive Al with LCSA for holistic impact evaluation. Traditional LCSA relies on static or
historical data. EcoRisk-Al provides the dynamic, high-frequency, real-time data required to
make LCSA an active management tool. This allows for a continuous evaluation of
environmental, social, and economic impacts throughout the mine's life cycle. This data-
driven approach moves beyond simple environmental impact assessments (EIA) to a more
comprehensive sustainability analysis (Greif et al., 2024).

EcoRisk-Al fundamentally enhances transparency and environmental accountability.
The system provides an objective, data-driven record of environmental performance. This
replaces subjective or infrequent manual inspections. This accessible data fosters
transparency for regulators, investors, and local communities. It holds operators
accountable for their environmental footprint in real-time. This application of Al for
automated anomaly detection and improved assessment accuracy is a key governance
advancement. The framework transforms governance from periodic auditing to continuous
assurance.

While EcoRisk-Al enhances governance through data-driven transparency, its
implementation introduces new ethical dimensions. The system aggregates high-resolution
environmental data, raising critical questions of data privacy, surveillance, and potential
bias (Sanchez et al., 2024). A clear governance framework is required to determine data
access protocols balancing corporate intellectual property with public right to know. This
directly connects to the challenge of inclusivity in decision-making. As designed, the
dashboard (Figure 6) primarily serves operators. However, a key ethical imperative is to
prevent creating a digital divide, or "inequalities that divide those who can and cannot create
sustainable outcomes with Al" (Hammerschmidt et al.,, 2025). Future deployment must
prioritize inclusivity by exploring public-facing, simplified dashboards. This would
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empower local communities with accessible risk information, transforming them from
passive observers to active stakeholders.

This framework acts as a critical bridge between technology and practical governance,
supporting decision-making for both key stakeholders. For policymakers and regulators, the
system provides an objective, aggregated, and real-time data source. This evidence-based
approach moves environmental oversight from its current state of reactive, compliance-
based self-reporting to a proactive governance model. For mining companies, the system'’s
value extends beyond compliance. The predictive alerts on the Decision Support Interface
(Figure 6) are a direct operational risk management tool. It enables operators to prevent
catastrophic failures, protect worker safety, and avoid costly shutdowns. Furthermore, the
system generates transparent, verifiable data essential for corporate Environmental, Social,
and Governance (ESG) reporting, thereby improving investor confidence (Yadav et al,,
2024).

Beyond the technical advances, the deployment of EcoRisk-Al introduces governance,
skill, and regulatory alignment considerations. The platform will operate in remote, low-
connectivity mining regions. Thus, the communication system must be designed under
constrained bandwidth conditions. In practice, LoRaWAN provides ultra-low power
consumption and long-range coverage, but limited payload throughput, whereas NB-IoT
provides higher throughput and better QoS but requires MNO infrastructure and incurs
higher recurring fees. Greif et al. (2024) note that system-wide digital transformation in
mining collapses when physical deployment choices are misaligned with economic realities
of operators. Hence, EcoRisk-Al must enable dual-stack communication options, with
automated fallback to LoRa for contingency operation.

Data governance is another critical challenge. Mine-site geochemical data and ground
deformation logs can be commercially sensitive. Therefore, the system must support
federated learning, enabling local training without raw data leaving the mine site. This aligns
with Zhan et al. (2025), who argue that federated frameworks are essential for adoption of
Al in critical industries that have mixed private-public regulatory boundaries. In addition,
interpretability and explainability modules must be present. Garcia et al. (2025) show that
explainable Al (XAI) significantly increases risk communication trust, particularly in early
warning contexts.

EcoRisk-Al also creates direct alignment pathways with formal sustainability
regulation. Outputs of the model can be embedded into ESG disclosure and into Indonesian
AMDAL/EIA documentation. Further, the near-real-time data streams produced by the
system can serve as empirical evidence to populate dynamic LCSA dashboards, enabling
measurable and auditable SDG impact evidence. Agusdinata et al. (2022) emphasize that
predictive Al integrated into LCSA is not a theoretical luxury, but an operational necessity
to transition mining governance from static annual reporting into continuous assurance.
Therefore, EcoRisk-Al is not merely a technological artifact—it is an institutional
transformation tool that converts sustainability from narrative claims into quantitative
accountability.

4. Conclusions

Indonesia's mining sector faces an urgent gap between its economic importance and its
environmental oversight. Conventional monitoring systems remain fragmented and operate
reactively. This reactive posture fails to prevent significant ecological damage. This study
addressed this critical gap by proposing the EcoRisk-Al framework, a proactive, multimodal,
and adaptive solution designed to shift monitoring from a reactive to a predictive stance.

The primary contribution of this conceptual framework is its capability to transform
raw, heterogeneous data into actionable predictions. The study details a four-component
architecture (Acquisition, Preprocessing, Al Engine, and Dashboard). This study defined the
methodology for a hybrid Al engine (CNN-LSTM) and, critically, detailed the complex spatio-
temporal preprocessing required to unify satellite, 10T, and field report data. The
framework's ability to forecast specific hazards such as AMD contamination and
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geotechnical failures provides the technical foundation for a proactive environmental
management paradigm.

This study provides actionable recommendations for key stakeholders. Government
agencies and regulators should accelerate the adoption of Al-based monitoring systems,
integrating predictive analytics into regulatory requirements like the AMDAL process to
improve governance. The mining industry must view investment in digital infrastructure
(IoT, Al) as a core component of operational risk management and Environmental, Social,
and Governance (ESG) commitments. Finally, academic institutions must collaborate with
industry to update curricula, bridging the digital talent gap required to operate and maintain
these advanced socio-technical systems.

EcoRisk-Al, as a conceptual framework, faces structural limitations. These include the
significant "cold start" problem due to insufficient high-resolution historical data for model
training, the high implementation cost of industrial-grade sensors, and the risk of domain-
shift penalties when applying a model trained in one geological province such as Kalimantan
coal to another such as Sulawesi laterite. Furthermore, the system's impact is socio-
technical, its predictive intelligence only creates value if embedded within institutional
procedures that mandate preventive action.

Future research should focus on overcoming these barriers. The development of low-
cost, reliable sensors is a critical path forward to democratize access to this technology.
Model scalability presents another frontier, future work should investigate federated
learning techniques to train regional or national models without centralizing sensitive site
data. This path is essential for creating a comprehensive, interconnected national
monitoring network.
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