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ABSTRACT

Background: The rising complexity of threats to public safety and critical infrastructure has highlighted the
limitations of conventional human-operated surveillance systems, creating the need for adaptive, intelligent,
and real-time monitoring solutions. Advances in artificial intelligence (AI), computer vision, and geospatial
technologies provide opportunities to enhance surveillance through automated detection, analysis, and
response. This article examines the integration of pan-tilt-zoom (PTZ) cameras with deep learning models,
geospatial data, and distributed computing frameworks as the foundation for next-generation intelligent
surveillance systems. Methods: The study employs a narrative review approach, synthesizing recent
developments in PTZ camera calibration, convolutional neural networks (CNN), reinforcement learning for
autonomous control, and fog computing for distributed video analysis. Research spanning dual-mode fisheye-
PTZ systems, lightweight CNN architectures, geospatial data integration, and Internet of Robotic Things (IoRT)
frameworks is analyzed to demonstrate practical applications in smart city, industrial, and defense contexts.
Findings: Findings reveal that PTZ cameras, when coupled with deep learning and geospatial intelligence,
achieve high accuracy in real-time object tracking, small-object recognition, and anomaly detection, with
minimal latency under dynamic conditions. Experimental evidence shows error margins below 2% in
calibration models and near-perfect accuracy in long-range facial recognition. Integration with fog computing
and [oRT enhances responsiveness, scalability, and contextual awareness, while reinforcement learning enables
autonomous decision-making for robots and camera networks. Conclusion: The article concludes that
combining PTZ hardware precision, Al-based visual analysis, and spatial data intelligence transforms
surveillance systems from passive observers into proactive, adaptive, and collaborative agents. However,
challenges remain in ensuring robustness under real-world conditions, minimizing latency, and addressing
operational usability. Novelty/Originality of this article: This work presents a holistic synthesis of Al-driven
vision, PTZ camera control, geospatial intelligence, and distributed architectures, offering an integrated
framework for developing adaptive and context-aware surveillance systems in the digital era.
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1. Introduction

The increasing complexity of threats to public safety and critical infrastructure
necessitates surveillance systems that are not only passive but also adaptive, intelligent, and
capable of responding to threats in real-time. Conventional surveillance systems that rely
on human operators have proven insufficient in addressing dynamic field situations,
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particularly in detecting incidents such as acts of violence or security breaches. Therefore,
the integration of artificial intelligence (Al) into surveillance systems has emerged as a
strategic approach to providing more reliable security solutions. The application of Al in
monitoring systems has advanced through the use of facial recognition technologies,
automated access control systems, and video surveillance powered by machine learning
and computer vision. Studies have shown that integrating Al into perimeter security
systems—such as those deployed in data centers—can enhance operational efficiency and
intrusion detection through visual authentication methods and automatic monitoring of
sensitive areas (Villegas-Ch & Garcia-Ortiz, 2023). This technology not only strengthens
access control but also accelerates threat response with greater accuracy compared to
manual approaches.

Simultaneously, video-based violence detection technologies have undergone rapid
development. Recent research has introduced deep learning models based on U-Net and
LSTM architectures capable of recognizing violent actions from surveillance video with high
accuracy and low computational cost (Vijeikis et al., 2022). These models enable on-device
edge processing, thereby speeding up detection and reducing the bandwidth required to
transmit full video streams to central servers. The combination of Al-based access control
systems and automated violence behavior detection results in surveillance systems that are
more responsive, intelligent, and resource-efficient. In the context of national security and
smart cities, such systems hold great potential for delivering proactive protection without
compromising efficiency or privacy. Consequently, the development of Al-powered
surveillance systems using end-to-end approaches has become a critical priority in efforts
to strengthen security resilience in the digital age.

In developing such systems, hardware capable of dynamic movement while
maintaining high visual accuracy is essential. This is where pan-tilt-zoom (PTZ) cameras
play a crucial role, particularly due to their ability to cover wider areas through rotation and
optical zoom. However, continuous changes in viewing angles and zoom levels pose
technical challenges, notably in the form of shifting camera calibration parameters, which
can reduce detection accuracy. A generalized model has been proposed for dual-PTZ
cameras that accounts for optical center displacement and misalignment of rotation axes,
linking camera parameters to actual feedback values through mathematical modeling and
data fitting. Experimental results show that this method achieves focal length errors below
4% and rotation and translation errors below 1%, making it an efficient and accurate
solution for visual and 3D spatial monitoring applications (Mao et al., 2022). This feedback-
parameter-based PTZ camera calibration method allows the system to automatically
recalibrate intrinsic and extrinsic parameters across various pan, tilt, and zoom settings.

Beyond image acquisition accuracy using hardware such as PTZ cameras, the
effectiveness of modern surveillance systems also depends heavily on how video data is
analyzed and transmitted across complex networks. To address these challenges,
distributed architectural approaches combining deep learning, the Internet of Things (IoT),
and fog computing are being increasingly developed. For example, a weapon-detection-
based surveillance system was designed using the YOLOv5 model, integrated into an
intelligent network architecture based on software-defined networking (SDN) and fog
nodes. In this system, surveillance cameras connected to edge devices do not merely record
but also perform inference processes locally—if a hazardous object is detected, only
metadata and relevant video snippets are sent to the command center via pre-optimized
SDN pathways (Fathy & Saleh, 2022). This approach enables data processing to occur near
the source (fog layer), reducing reliance on cloud data centers and minimizing transmission
latency. Furthermore, the architecture supports system scalability, as communication and
network control flows can be flexibly programmed to meet evolving security needs. By
integrating this localized data processing strategy with adaptively calibrated PTZ camera
systems, surveillance platforms can be transformed into intelligent monitoring solutions
that are not only responsive but also context-aware and resource-efficient. This
combination is well-suited for modern security systems requiring high reaction speeds, as
well as military environments that demand real-time, high-precision spatial analysis.
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In intelligent surveillance systems, beyond visual and analytical aspects, mobility also
plays a significant role. One relevant approach involves the use of autonomous patrol robots
powered by computer vision and artificial intelligence. Zheng et al. (2022) developed an
enhanced path-planning method for indoor patrol robots using deep reinforcement
learning (DRL). In their research, PTZ cameras were employed to capture spatial
information, which was then processed by learning algorithms to automatically determine
the robot’s movement direction and speed. The main focus of this approach was to refine
the reward and punishment functions to allow faster algorithm convergence and produce
optimal paths that avoid obstacles and reach targets (Zheng et al, 2022). This
implementation demonstrates great potential for active robot-based surveillance,
particularly in enclosed environments such as industrial facilities, shopping centers, or data
centers. However, in dynamic operational settings, fog computing-based approaches play a
critical role in enabling localized decision-making.

Jing & Xue (2024) proposed an IoT optimization method based on fog computing,
enhanced by an improved convolutional neural network (CNN). The refined CNN is used to
continuously estimate values within the framework of a markov decision process, which is
particularly suitable for navigation and robotic decision-making applications. By
integrating the CNN architecture into fog nodes, analysis and response processes can be
conducted closer to data sources such as robots or surveillance cameras, thereby reducing
latency and increasing operational efficiency. The combination of deep reinforcement
learning for navigation control and CNN in a fog computing environment enables patrol
robots to respond to their surroundings rapidly and adaptively. This system not only
optimizes patrol routes but also simultaneously performs visual analysis to detect nearby
threats. The integration suggests that Al-powered autonomous robots can become an
integral part of intelligent spatial surveillance systems that are efficient, context-aware, and
capable of real-time response in modern security scenarios.

When designing surveillance systems that are not only adaptive and intelligent but also
spatially contextual, the integration of artificial intelligence with geographic information
becomes essential. This approach, known as GeoAl, combines artificial intelligence, machine
learning, and deep learning with geographic information systems. According to Choi (2023),
GeoAl enables automatic and accurate spatial analysis for purposes such as object detection,
land-use change mapping, and location-based tracking. These capabilities greatly support
PTZ camera systems in dynamic surveillance and target tracking. The automatic processing
of spatial imagery is further reinforced by research from Puttinaovarat & Horkaew (2022),
who developed a geospatial platform for classifying green space areas using deep learning.
Their system analyzes satellite imagery with high accuracy using a ZFNet-based model and
presents results in real-time via a digital platform. This shows that the combination of GIS
and deep learning can be employed not only for environmental monitoring but also to
support priority area mapping and visual detection in spatial intelligence systems. In the
context of PTZ cameras, such spatial understanding provides a foundation for more focused
and contextually aware camera movements, ensuring that rotation and zoom target
spatially significant areas or objects for further analysis.

The effectiveness of PTZ camera-based monitoring systems depends on both the
hardware's ability to capture high-quality imagery and the software's capacity to analyze
this information within an accurate spatial context. Supporting this, the selection of camera
sensors and the use of deep learning-based processing approaches are key to system
success. A study by Llaurado et al. (2023) examined challenges in recognizing human faces
from long distances, a common issue in surveillance systems deployed in public smart city
spaces. Their method involved developing a performance-based evaluation of image
sensors, considering object distance from the camera, lens focal length, and final face
resolution in the frame. Using a restructured dataset based on long-range images from the
Georgia tech and quality dataset for distance faces databases, they tested several sensor
configurations and found that increasing focal length significantly improved face
recognition accuracy to over 99% at distances of 15-20 meters. These findings provide
valuable insights for determining the optimal positioning and specifications of PTZ cameras
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in environments requiring precise identification, such as airports, border zones, or
government buildings.

Meanwhile, Huillca & Fernandes (2022) highlighted the role of conventional cameras
as active spatial sensors through an innovative approach. They demonstrated that with just
a single still image, a ship’s speed can be estimated accurately by analyzing wave patterns
(Kelvin wakes) and applying principles of projective geometry. By leveraging homography
and vanishing line estimation, they reconstructed the water surface in metric space,
identified wave points, and calculated the ship’s speed. Validation using radar data as
ground truth showed the method to be reliable. This confirms that cameras are not merely
visual documentation tools but also accurate geospatial data sources that can be processed
using Al-based analytical methods. By combining the optical capabilities of cameras with
Al-driven spatial approaches, systems can dynamically focus on strategic areas, enhance
monitoring accuracy, and generate deep geospatial intelligence—forming a critical pillar of
future adaptive and intelligent surveillance systems.

2. Methods
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Fig. 1. Brainstorm

The Figure 1 illustrates a conceptual framework of a Pan-Tilt-Zoom (PTZ) camera
control system for surveillance, integrated with artificial intelligence, geospatial data, and
deep learning technologies. The framework begins with PTZ cameras that undergo
calibration and integration, alongside the fusion of Al-based vision and geospatial data to
enable spatial vision and adaptive surveillance. These capabilities support key functions
such as anomaly recognition, adaptive surveillance with IoRT, and spatially responsive
systems. At the core, deep learning serves as the foundation, enhancing the vision system
while addressing implementation challenges. Furthermore, the system is evaluated through
case studies, the utilization of distributed visual sensor networks, and deep learning-based
automatic tracking, while also highlighting its prospects for future surveillance applications.
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3. Results and Discussion
3.1 Pan-tilt-zoom (PTZ) camera technology

Pan-tilt-zoom (PTZ) cameras are vital components in modern surveillance systems due
to their ability to move horizontally (pan), vertically (tilt), and perform image magnification
(zoom). These features allow for flexible monitoring of wide areas using a single camera,
which can be directed automatically or manually. In complex and dynamic urban
environments, PTZ cameras are particularly useful for tracking object movements or
suspicious activities without losing visual detail. In a study by Arroyo et al. (2021), an
intelligent surveillance system was constructed by combining a fisheye camera (for full 180°
x 360° coverage) with a PTZ camera (for focused observation). When the fisheye camera
detects movement or activity in a particular area, the system automatically directs the PTZ
camera to thatlocation to capture clearer and more detailed images. This automated control
is enabled by the implementation of ONVIF (Open Network Video Interface Forum), an open
communication standard that allows various [P-based video surveillance devices to
interconnect and interoperate. With ONVIF, PTZ cameras can be controlled through
multiple video management systems, regardless of brand. Functions such as pan, tilt, zoom,
preset positioning, and automated commands can be accessed over IP networks. ONVIF
simplifies the integration and automation of surveillance systems, especially in Al- and
geospatial-based intelligent systems. With its adaptive capability and high interoperability,
ONVIF-enabled PTZ cameras are not merely auxiliary tools but integral elements of efficient
and responsive intelligent monitoring systems.

To ensure that PTZ cameras operate effectively within automated surveillance systems,
proper calibration and integration of sensors, control systems, and other visual components
are essential. In the study by Arroyo et al. (2021), a dual-mode surveillance system was
designed using a fisheye camera for broad monitoring and a PTZ camera for detailed
observation. To accurately direct the PTZ camera to targets detected within the fisheye
image, the system employed a back-projection-based calibration approach. Unlike
traditional re-projection methods, back-projection maps pixels from the fisheye image onto
aflat plane (ground surface) where the objectis assumed to exist. Assuming all objects move
on a planar surface, the system geometrically calculates the target’s location and determines
the angle required for the PTZ camera to be precisely directed to that point. This allows for
continued observation without relying on stereo feature matching or complex triangulation
(Arroyo et al, 2021). Additionally, the system uses the ONVIF protocol to integrate IP
camera control directly into the software platform. ONVIF enables automated pan, tilt, and
zoom controls of the PTZ camera based on detections from the fisheye camera, rendering
the system responsive, real-time, and applicable in complex urban or traffic surveillance
environments.

Following successful calibration for accurate target localization within the observation
field, the next stage involves automatic tracking using deep learning. In research by You et
al. (2022), a PTZ-based tracking system was developed using the YOLOv4 algorithm for real-
time object detection in video streams. The detection outputs were then converted from
image coordinates to real-world coordinates using the perspective-n-point (PnP) algorithm.
Subsequently, a Pan-Tilt-Height (PTH) model was utilized to compute PTZ camera
movements. This model translates the spatial position of a target into camera control
instructions—namely pan (horizontal), tilt (vertical), and height—which correlate with
camera positioning or zoom. Through this approach, the system is capable of autonomously
maintaining focus on a moving target without human intervention. This method aligns
closely with the previously discussed back-projection strategy in dual-camera systems, as
both approaches leverage spatial information to guide the camera with high precision.
Experiments demonstrated that this method yielded high accuracy, with a maximum
position error of only 2.31 cm, an average of 1.245 cm, and a maximum camera direction
error of 1.78° with an average of 0.656°. Using this method, the PTZ camera can
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automatically and precisely track moving targets within the monitored area, enhancing the
effectiveness of Al-based spatial surveillance systems.

Once the PTZ camera has been successfully integrated into an Al-based tracking
system, the next step involves its deployment within a distributed camera network, or
Visual Sensor Network (VSN). In a study by Giordano et al. (2022), PTZ cameras were used
collaboratively alongside static cameras to create a real-time 3D monitoring system for
indoor environments. This system is capable of detecting and tracking multiple targets
simultaneously, thanks to the PTZ camera’s ability to adjust its viewing angle and zoom level
based on object movement dynamics. To efficiently manage camera positioning, the system
employed a game theory approach that enables each PTZ camera to make optimal decisions.
Simulation results showed that the system could reduce overlapping coverage areas
between cameras and maintain high tracking accuracy, with an average tracking error of
only 0.656°, and a maximum of 1.78°. These advantages were achieved without a centralized
control unit, making the system more scalable and adaptive. This integration strongly
supports the earlier discussed PTH model, as the spatial positions of targets can be directly
utilized by PTZ cameras in the VSN to conduct intelligent, coordinated tracking in real-world
environments.

After demonstrating the effectiveness of PTZ cameras in distributed systems like VSNs,
field studies illustrate how this technology is applied in real-world scenarios. In the Remote
AFIS (Aerodrome Flight Information Service) project, Reuschling & Jakobi (2022)
developed a remote tower surveillance system using a combination of panoramic and PTZ
cameras. With the aid of a VR headset, operators could intuitively control the PTZ camera;
however, challenges such as cybersickness caused by abrupt camera movements and high
latency in camera responses were noted. On the other hand, Church et al. (2024) evaluated
the effectiveness of zoom cameras mounted on drones, comparing the performance of
optical, digital, and hybrid zoom types. Their findings revealed that hybrid zoom cameras
with visual computing capabilities could accurately read livestock ear tags from a distance
of up to 60 meters—demonstrating a performance closely aligned with PTZ cameras for
detailed long-range observation. These studies show that while PTZ cameras are highly
reliable, their real-world integration still faces practical challenges such as motion stability,
bandwidth limitations, and user comfort.

PTZ cameras play a crucial role in modern surveillance systems through their
automatic pan, tilt, and zoom capabilities. When integrated with deep learning and spatial
calibration, they enable real-time, high-precision target tracking. In distributed visual
networks, PTZ cameras operate collaboratively to ensure efficient coverage. Real-world
case studies confirm their field effectiveness, although issues such as latency and motion
smoothness require further optimization to enhance system performance.

3.2 Deep learning in vision systems

PTZ (Pan-Tilt-Zoom) cameras require an intelligent visual system to enable automatic
and adaptive object tracking. The primary role of deep learning in this system is to serve as
a signal processing unit capable of dynamically interpreting and responding to image data.
Convolutional neural networks (CNN) are a fundamental pillar of modern computer vision
due to their hierarchical and progressive ability to extract spatial features from images.
Research by Alzubaidi et al. (2021) affirms that CNN enable richer visual representations
without the need for manual feature engineering, laying the groundwork for PTZ cameras
to recognize objects with high precision. On the other hand, approaches such as imitation
learning pave the way for PTZ cameras to learn from observations, for instance, by tracking
keypoints of moving objects. This “learning by observing” mechanism enhances the
camera's adaptability, allowing it to continuously evolve from visual data (Sun et al., 2022).

To ensure PTZ cameras can respond to object movement accurately and in real-time, a
visual detection system is needed that is not only reliable but also computationally efficient.
When surveillance systems must handle continuous video streams—especially in complex
environments such as urban traffic or public spaces—processing efficiency becomes as
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crucial as accuracy. Therefore, selecting an appropriate CNN architecture plays a strategic
role in designing an effective vision system for PTZ cameras. The study by Junos et al. (2022)
highlights how lightweight CNN architectures, such as those based on MobileNetV2, can be
employed for object recognition in hardware-constrained systems. They demonstrated that
the combination of bottleneck convolutions and squeeze-and-excitation (SE) mechanisms
not only maintains human detection accuracy in video streams but also significantly reduces
processing latency. This approach is particularly relevant for PTZ camera integration, as it
allows the system to operate smoothly under real-time constraints.

In addition, advancements in spatial modeling offer further value in enhancing the
initial capabilities of vision systems. The research by Fuertes et al. (2022) on human
detection using omnidirectional cameras illustrates how a spatial grid approach with a
foveatic classifier can focus processing resources on the most relevant areas within an
image. This strategy results in much greater processing efficiency, especially when applied
as the initial layer in a PTZ camera system. When a fisheye camera captures a wide area and
detects movement, such a system can quickly redirect the PTZ camera to the relevant region
for detailed observation.

This interplay reinforces the concept of a dual-mode system previously described, in
which the combination of a wide-angle camera and a PTZ camera distributes roles between
broad detection and focused observation. In this system, detection speed and model
efficiency critically determine the PTZ camera’s responsiveness in adjusting its pan, tilt, and
zoom angles. The use of lightweight CNN and adaptive spatial processing serves as a crucial
bridge between initial visual sensors and the camera's motion mechanisms. Thus, accuracy
alone is not the primary parameter in a PTZ-based vision system—efficiency in the
underlying CNN architecture is equally vital. The combination of intelligent spatial
processing and lightweight models opens the door for PTZ systems to operate more
adaptively, energy-efficiently, and reliably over time, even when exposed to dynamic
operational conditions and massive visual data.

Once the vision system efficiently detects an object, the next challenge is translating the
detection results into autonomous PTZ camera control. At this stage, deep learning
functions not only as a visual recognizer but also as a motion control mechanism. PTZ
cameras, with their pan, tilt, and zoom capabilities, offer substantial flexibility in
surveillance, but this potential is only maximized if the system can be intelligently and
adaptively controlled. A promising approach is demonstrated by Zhai & Zhang (2022), who
developed a method for detecting low-flying UAV (Unmanned Aerial Vehicle) targets using
an enhanced YOLOv3 model. In addition to adapting the YOLO architecture for greater
sensitivity to small and fast-moving targets, they also integrated a PID controller to directly
steer the PTZ camera toward detected targets. This system is capable of autonomously
keeping the object centered within the field of view, eliminating the need for manual
intervention. This aligns well with the core principle of PTZ systems based on Pan-Tilt-
Height (PTH), where the target's position in image coordinates is converted into physical
parameters for camera angle control.

A more applied system was developed by Fan et al. (2021), in the context of a UAV-
based Explosive Ordnance Disposal (EOD) system. They combined a PTZ camera with a
YOLOVS5 algorithm trained to detect grenades. The visual detection results were then used
to directthe PTZ in real time toward targets detected from the air. Interestingly, this process
involved not only image detection but also integration between remote control mechanisms
and CNN-based recognition algorithms, showcasing how visual and control components can
be merged into a unified intelligent system. In the context of a dual-mode system, this
approach mirrors the division of roles where the fisheye camera serves as the initial
detector, and the PTZ camera performs detailed tracking. Once an object is imaged, its
coordinates are computed and translated into pan-tilt commands via back-projection or the
PTH model. Without CNN and detection models like YOLO, this PTZ control process would
be significantly slower or potentially non-automated. Thus, the integration of CNN (as
detectors) with the camera control system (as actuators) positions deep learning not just as
a recognition tool but also as a precise motion controller. This synergy enables the
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development of adaptive vision systems capable of tracking objects in dynamic
environments without human intervention.

In developing autonomous PTZ camera systems, the performance of the vision system
cannot rely solely on sophisticated deep learning architectures. More critically, the CNN
model must adapt to real-world visual conditions, such as low lighting, low-contrast objects,
or image noise from high zoom levels. To accurately follow targets in suboptimal conditions,
the CNN model must demonstrate strong generalization capabilities. This means the model
must remain stable even when exposed to environmental variations not explicitly
represented in its training data. Two relevant field studies show how CNN can be effectively
implemented in real-world visual systems. In a study by Garcia-Segura et al. (2023), CNN
were applied to road inspection videos to detect surface damage such as cracks and wear.
The images were captured from moving vehicles under diverse road conditions, including
direct sunlight, tree shadows, and heavy traffic. The model successfully recognized damage
patterns with high accuracy, illustrating that CNN can function robustly even under varying
textures, contrasts, and visual noise—conditions commonly encountered in PTZ systems.

Meanwhile, Ren et al. (2022) investigated the detection of residential energy systems
(e.g.,, solar panels) from drone imagery using a U-Net-based CNN with a ResNet50 backbone.
The main challenges included unstable image quality, low resolution, extreme viewing
angles, and shadow interference. However, experimental results showed that the model
maintained high accuracy even under far-from-ideal visual conditions. This success was
attributed to training on diverse and realistic datasets rather than synthetic or overly
structured data. Both studies provide concrete evidence that CNN models trained with
varied and realistic data possess high adaptability—an essential quality for PTZ cameras,
which must track objects not in laboratory settings but in real-world scenarios: in public
spaces, under changing lighting conditions, and with rapidly moving objects. The
effectiveness of PTH-based PTZ tracking systems hinges on initial visual precision. If a CNN
lacks generalization, minor angular errors from misdetection could cause loss of tracking
focus.

Moreover, the findings from these two studies underscore that CNN model robustness
cannot be separated from training strategies. Architectural depth alone is insufficient; data
diversity, visual augmentation, and contextual validation are critical to ensuring the model
is field-deployable. Therefore, in PTZ camera systems, building representative datasets and
conducting comprehensive validation are not optional additions—they are fundamental
requirements. In conclusion, CNN generalization is not merely an added advantage but a
foundational pillar of reliable PTZ vision systems across diverse operational conditions.
Drawing from empirical field evidence, this approach offers a practical solution to bridge
the gap between technical capabilities and real-world application needs.

Finally, after discussing how CNN can be integrated, optimized, and generalized within
PTZ camera vision systems, one crucial aspect remains: model validation. Deep learning
models will only be effective in autonomous surveillance if they can maintain stable
performance under real-world conditions—not just during laboratory trials. Kattenborn et
al. (2022) warned that many CNN models that appear accurate during internal evaluation
often fail in deployment because they are validated on data too similar to the training set.
In PTZ systems, even minor detection errors can result in incorrect pan or tilt directions,
causing the camera to lose track of its target. Research by Li et al. (2022) reinforces the
importance of testing under various image conditions. Models must be validated on visual
variations that approximate field scenarios: low lighting, fast-moving objects, and complex
backgrounds. Without this, PTZ systems that seem precise during testing may become
unresponsive in deployment. Rigorous validation is not merely about numerical accuracy—
itinvolves building trust that the PTZ camera can truly “see and react” correctly, under any
circumstances and at any time.
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3.3 Integration of Al vision and geospatial data in PTZ camera control

The integration of visual artificial intelligence (Al vision) and geospatial data forms a
fundamental basis for modern surveillance systems based on PTZ (Pan-Tilt-Zoom) cameras.
These devices no longer serve merely as passive observers; they have evolved into active
systems capable of understanding visual-spatial contexts and automatically adjusting
monitoring direction and focus. Google earth engine (GEE) serves as the backbone for large-
scale spatial data processing as well as a platform for training and deploying cloud-based
machine learning algorithms. Yang et al. (2022) demonstrated how GEE provides access to
multi-temporal satellite imagery and integrates Al techniques for automated spatial
analysis, including land classification, change detection, and spatial object tracking.

Meanwhile, the integration of GIS technology and augmented reality (AR) introduces a
new dimension in spatial interaction, especially for PTZ camera control interfaces. In a study
by Bazargani et al. (2022), it was shown how AR-GIS systems enable users to visualize
spatial objects directly within real-world environments through digital overlays, facilitating
positioning and location-based visual decision-making. However, achieving intelligent
spatial decision-making presents significant challenges in managing and integrating
geospatial big data. Al-Yadumi et al. (2021) highlighted that data source diversity,
heterogeneous data formats, and semantic integration requirements pose major obstacles
to consolidating spatial information, particularly under demands for real-time analytics and
system interoperability. In the context of PTZ cameras, successful geospatial data
integration directly influences the effectiveness of camera orientation based on priority
zones or high-risk points.

In intelligent PTZ camera surveillance systems, the camera’s ability to respond to the
target’s position in the real world is a critical requirement. The mechanisms controlling
camera direction and zoom must be closely linked with spatial data and object behavior to
enable adaptive monitoring, in line with the pan-tilt-height (PTH) control principle. Fahim
et al. (2023) introduced AcTrak, an automatic PTZ camera control framework based on
reinforcement learning. The camera dynamically zooms in on detected objects and zooms
out to detect new objects appearing within the surveillance area. AcTrak is capable of
selecting the optimal camera configuration based on the target’s current status, optimizing
the trade-off between object tracking and area coverage.

In traffic monitoring contexts, PTZ cameras are also employed to accurately measure
vehicle speed and position using the inverse perspective mapping (IPM) method. This
method performs real-time camera calibration using road markings and vanishing points,
transforming camera views into actual road coordinates (Shi et al., 2023). From this, vehicle
positions and potential risks can be directly computed. This technique enables PTZ cameras
to function as active spatial sensors in complex traffic surveillance. The system’s accuracy
heavily depends on object detection capability, especially for small objects in open
environments or remote sensing scenarios. Shivappriya et al. (2021) developed the AAF-
Faster RCNN method, which integrates additive activation functions into cascade detection
layers. This model enhances small object detection with clearer boundaries and faster
convergence, making it highly suitable to support PTZ systems that require accuracy even
at small scales or long distances.

The ability of PTZ cameras to detect, track, and understand the contextual activities of
objects is central to adaptive spatial-visual intelligence. Particularly in dense and dynamic
environments, rapid small object detection and behavior interpretation become
increasingly important. The latest detection models, such as DC-YOLOvS, introduce
significant improvements in small object detection through architectural modifications
ranging from novel downsampling methods to enhanced feature fusion. Lou et al. (2023)
demonstrated that this algorithm improves detection accuracy on small-object datasets
such as VisDrone and TinyPerson, making DC-YOLOv8 highly relevant for directing PTZ
cameras toward small objects in open or public spaces. Meanwhile, model selection must
also consider efficiency. Nepal & Eslamiat (2022) compared YOLOv3, YOLOv4, and YOLOv5
in the context of UAV emergency landing systems. Their results show that YOLOv5 excels in
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accuracy, albeit with slight latency compared to YOLOv3. This combination of speed and
precision supports its application in PTZ camera systems for real-time responses to critical
events such as intrusions or evacuations.

However, Al vision capabilities extend beyond object recognition. Another crucial
aspect is human activity classification. Arshad et al. (2022) noted that most current human
activity recognition (HAR) systems rely on visual data and utilize CNN and LSTM
architectures. PTZ cameras integrating these models can identify activities such as walking,
running, or aggressive behavior, enabling automatic camera redirection based on activity
intensity rather than mere physical location. Advanced feature fusion approaches are also
explored by Khan et al. (2021), who proposed serial-based extended fusion and weighted
classification methods (kurtosis-controlled KNN) for human action recognition. This
approach maintains high accuracy with low computational overhead, making it highly
suitable for edge-device-based PTZ cameras that require fast, energy-efficient, and
memory-efficient responses. By combining lightweight object detection models, real-time
tracking, and efficient human action recognition, PTZ camera systems transform from
passive observers into active surveillance agents that intelligently respond to spatial
presence, movement, and behavior according to visual-spatial cues. Rather than merely
following objects based on visual detection alone, modern PTZ camera systems are designed
to operate based on comprehensive spatial understanding. This means camera decisions to
highlight or monitor an area consider not only object presence but also spatial structure,
environmental risks, and threat potentials grounded in geospatial context.

For this purpose, point cloud-based spatial segmentation has become an important
approach, especially in complex areas such as dense urban zones or disaster terrains.
However, point cloud data tend to be unstable due to sparsity, noise, and class imbalance.
Grilli et al. (2023) proposed the use of knowledge enhanced neural networks (KENN), which
combine neural network learning with symbolic logic rules. This system enhances spatial
segmentation with semantic context, enabling PTZ cameras to more accurately direct their
views based on real spatial structures rather than mere image pixels.

Furthermore, in managing disaster-prone or priority monitoring zones, risk-based
decision-making approaches are necessary. Gohil et al. (2024) demonstrated that fuzzy
logic can be used to build multi-hazard models based on environmental parameters such as
rainfall, elevation, and land use. Fuzzy logic mimics human reasoning by accommodating
uncertainty and ambiguity; rather than rigid binary categories (true/false), fuzzy values can
range continuously (e.g., “moderately high” or “slightly vulnerable”). These fuzzy values are
then classified into different vulnerability levels, enabling PTZ cameras to automatically
prioritize their monitoring focus on high-risk zones. Such spatial integration has also been
validated in field implementations, as shown by Whitehurst et al. (2021), who employed
drones to rapidly map disaster-affected areas, including assessing building damage and
flood potential. These data were subsequently integrated into Geographic Information
System (GIS) platforms to support layered monitoring. In PTZ camera contexts, drone
mapping results can be directly linked to camera control systems, expanding surveillance
coverage based on spatial conditions identified from aerial data. The integration of 3D shape
understanding, fuzzy risk assessment, and drone data opens the path for PTZ cameras to act
not only as “observers” but as “interpreters” of space, risk, and scenarios. Such systems
evolve beyond passive monitoring into spatially intelligent decision-making networks.

In today’s intelligent surveillance ecosystem, PTZ cameras no longer function as static
monitoring devices but as active components within distributed networks known as the
Internet of Robotic Things (IoRT). IoRT is an integrative concept combining sensors, robots,
monitoring devices, and cloud- or edge-based control systems to create responsive and
adaptive environments. Within such systems, PTZ cameras serve as “eyes” that not only see
but also understand and react to the environment based on collective spatial and visual
inputs. According to Andronie et al. (2023), the success of [oRT in surveillance depends on
components such as spatial big data management, sensor fusion, and deep learning
algorithms for object and event detection. Sensor fusion allows the system to unify data
from various devices—for example, UAV imagery, motion detectors, and fixed cameras—to
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provide a comprehensive understanding of spatial situations. In these systems, PTZ
cameras can autonomously adjust direction and zoom based on information from other
nodes, such as when a UAV detects suspicious movement in areas beyond fixed camera
coverage.

To ensure responsiveness to extraordinary events, anomaly detection capabilities are
required. Visual anomalies refer to behavioral patterns or events in video that deviate from
the norm, such as sudden fights, fleeing, or contextually inappropriate activities. Ullah et al.
(2021) developed an anomaly detection framework based on MobileNetV2 and residual
LSTM augmented with attention mechanisms. This combination efficiently recognizes
temporal patterns in video with low inference time and high accuracy. Tests using public
video datasets (e.g.,, UCF-Crime and UMN) showed this system outperforms conventional
anomaly detection models in speed and precision. For edge-based implementations, as
needed in PTZ cameras, this model is ideal since it does not require high-power hardware
to operate. This means PTZ cameras installed at strategic locations can locally process
captured video to detect anomalies, then send alerts or signals to control centers or other
[oRT nodes. Responses may include redirecting other cameras to the incident location or
activating public warning systems. Thus, PTZ cameras within IoRT frameworks become not
just observation tools but integral parts of collaborative intelligent systems combining
spatial processing, machine learning, and inter-device communication. This creates
surveillance systems that are not only reactive but also predictive and context-aware.

4. Conclusions

The utilization of deep learning technology in pan-tilt-zoom (PTZ) camera control
systems marks a new chapter in the development of intelligent geospatial surveillance
systems. As threats to critical infrastructure and public safety become increasingly complex,
the integration of artificial intelligence vision (Al vision), PTZ cameras, and spatial data
serves as a vital foundation for building visual intelligence systems capable of detecting,
analyzing, and responding to situations in real time. PTZ cameras, with their capabilities for
horizontal rotation (pan), vertical movement (tilt), and optical zoom, serve as central
components for monitoring wide areas with a single device. However, their effectiveness
depends on precise hardware calibration, accurate image processing, and automated
machine learning-based control mechanisms. The implementation of a dual-mode system,
which combines fisheye lenses for wide coverage with PTZ cameras for focused
observation, significantly enhances object detection accuracy.

Within this system, deep learning plays a pivotal role in visual analysis. Convolutional
neural networks (CNN) are employed to extract visual features hierarchically and
adaptively, reducing reliance on manual feature engineering. Lightweight architectures
such as MobileNetV2 enable efficient image processing without compromising accuracy.
Moreover, approaches based on spatial grids and foveatic classifiers accelerate object
detection by focusing on salient areas within the image. The integration of Al-based vision
systems with spatial data enriches the operational context of PTZ cameras. Platforms like
google earth engine (GEE) support large-scale spatial analysis, while augmented reality
geographic information systems (AR-GIS) enhance real-world camera control accuracy.
Segmentation based on knowledge-enhanced neural networks (KENN) applied to point
cloud data enables the interpretation of complex spatial structures, improving spatially-
informed surveillance capabilities.

In dynamic surveillance environments, the ability to recognize human activity and
detect visual anomalies is crucial. The combination of Convolutional Neural Networks
(CNN) with Long Short-Term Memory (LSTM) networks and attention mechanisms allows
systems to understand complex behavioral patterns, such as aggressive actions, escape
attempts, or other abnormal activities. This integration transforms PTZ cameras into active
surveillance agents capable of responding rapidly and adaptively to situational changes.
Further development of the internet of robotic things (IoRT) expands the scope of
surveillance systems by positioning PTZ cameras as part of a collaborative network of
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intelligent sensors. In this ecosystem, PTZ cameras coordinate with unmanned aerial
vehicles (UAVs), patrol robots, and fixed sensors, collectively forming a data-driven,
adaptive monitoring system. The use of sensor fusion techniques enhances situational
awareness and improves decision-making accuracy.

Nevertheless, challenges such as latency in remote control, cybersickness effects from
virtual reality (VR) integration, and the need to validate deep learning models against real-
world visual conditions demand serious consideration. Therefore, system development
must focus not only on technical reliability but also on the adaptability to operational
dynamics in the field. Overall, the integration of deep learning, PTZ cameras, and geospatial
data presents significant potential for building next-generation surveillance systems that
are proactive, highly precise, responsive, and spatially analytical. These systems not only
improve monitoring effectiveness in public spaces, industrial zones, and defense facilities
but also strengthen the development of spatial intelligence—an increasingly critical
component of national security in the evolving digital era.
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