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ABSTRACT  
Background: The rising complexity of threats to public safety and critical infrastructure has highlighted the 
limitations of conventional human-operated surveillance systems, creating the need for adaptive, intelligent, 
and real-time monitoring solutions. Advances in artificial intelligence (AI), computer vision, and geospatial 
technologies provide opportunities to enhance surveillance through automated detection, analysis, and 
response. This article examines the integration of pan-tilt-zoom (PTZ) cameras with deep learning models, 
geospatial data, and distributed computing frameworks as the foundation for next-generation intelligent 
surveillance systems. Methods: The study employs a narrative review approach, synthesizing recent 
developments in PTZ camera calibration, convolutional neural networks (CNN), reinforcement learning for 
autonomous control, and fog computing for distributed video analysis. Research spanning dual-mode fisheye-
PTZ systems, lightweight CNN architectures, geospatial data integration, and Internet of Robotic Things (IoRT) 
frameworks is analyzed to demonstrate practical applications in smart city, industrial, and defense contexts. 
Findings: Findings reveal that PTZ cameras, when coupled with deep learning and geospatial intelligence, 
achieve high accuracy in real-time object tracking, small-object recognition, and anomaly detection, with 
minimal latency under dynamic conditions. Experimental evidence shows error margins below 2% in 
calibration models and near-perfect accuracy in long-range facial recognition. Integration with fog computing 
and IoRT enhances responsiveness, scalability, and contextual awareness, while reinforcement learning enables 
autonomous decision-making for robots and camera networks. Conclusion: The article concludes that 
combining PTZ hardware precision, AI-based visual analysis, and spatial data intelligence transforms 
surveillance systems from passive observers into proactive, adaptive, and collaborative agents. However, 
challenges remain in ensuring robustness under real-world conditions, minimizing latency, and addressing 
operational usability. Novelty/Originality of this article: This work presents a holistic synthesis of AI-driven 
vision, PTZ camera control, geospatial intelligence, and distributed architectures, offering an integrated 
framework for developing adaptive and context-aware surveillance systems in the digital era.  
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1. Introduction  
 

The increasing complexity of threats to public safety and critical infrastructure 
necessitates surveillance systems that are not only passive but also adaptive, intelligent, and 
capable of responding to threats in real-time. Conventional surveillance systems that rely 
on human operators have proven insufficient in addressing dynamic field situations, 
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particularly in detecting incidents such as acts of violence or security breaches. Therefore, 
the integration of artificial intelligence (AI) into surveillance systems has emerged as a 
strategic approach to providing more reliable security solutions. The application of AI in 
monitoring systems has advanced through the use of facial recognition technologies, 
automated access control systems, and video surveillance powered by machine learning 
and computer vision. Studies have shown that integrating AI into perimeter security 
systems—such as those deployed in data centers—can enhance operational efficiency and 
intrusion detection through visual authentication methods and automatic monitoring of 
sensitive areas (Villegas-Ch & García-Ortiz, 2023). This technology not only strengthens 
access control but also accelerates threat response with greater accuracy compared to 
manual approaches. 

Simultaneously, video-based violence detection technologies have undergone rapid 
development. Recent research has introduced deep learning models based on U-Net and 
LSTM architectures capable of recognizing violent actions from surveillance video with high 
accuracy and low computational cost (Vijeikis et al., 2022). These models enable on-device 
edge processing, thereby speeding up detection and reducing the bandwidth required to 
transmit full video streams to central servers. The combination of AI-based access control 
systems and automated violence behavior detection results in surveillance systems that are 
more responsive, intelligent, and resource-efficient. In the context of national security and 
smart cities, such systems hold great potential for delivering proactive protection without 
compromising efficiency or privacy. Consequently, the development of AI-powered 
surveillance systems using end-to-end approaches has become a critical priority in efforts 
to strengthen security resilience in the digital age. 

In developing such systems, hardware capable of dynamic movement while 
maintaining high visual accuracy is essential. This is where pan-tilt-zoom (PTZ) cameras 
play a crucial role, particularly due to their ability to cover wider areas through rotation and 
optical zoom. However, continuous changes in viewing angles and zoom levels pose 
technical challenges, notably in the form of shifting camera calibration parameters, which 
can reduce detection accuracy. A generalized model has been proposed for dual-PTZ 
cameras that accounts for optical center displacement and misalignment of rotation axes, 
linking camera parameters to actual feedback values through mathematical modeling and 
data fitting. Experimental results show that this method achieves focal length errors below 
4% and rotation and translation errors below 1%, making it an efficient and accurate 
solution for visual and 3D spatial monitoring applications (Mao et al., 2022). This feedback-
parameter-based PTZ camera calibration method allows the system to automatically 
recalibrate intrinsic and extrinsic parameters across various pan, tilt, and zoom settings. 

Beyond image acquisition accuracy using hardware such as PTZ cameras, the 
effectiveness of modern surveillance systems also depends heavily on how video data is 
analyzed and transmitted across complex networks. To address these challenges, 
distributed architectural approaches combining deep learning, the Internet of Things (IoT), 
and fog computing are being increasingly developed. For example, a weapon-detection-
based surveillance system was designed using the YOLOv5 model, integrated into an 
intelligent network architecture based on software-defined networking (SDN) and fog 
nodes. In this system, surveillance cameras connected to edge devices do not merely record 
but also perform inference processes locally—if a hazardous object is detected, only 
metadata and relevant video snippets are sent to the command center via pre-optimized 
SDN pathways (Fathy & Saleh, 2022). This approach enables data processing to occur near 
the source (fog layer), reducing reliance on cloud data centers and minimizing transmission 
latency. Furthermore, the architecture supports system scalability, as communication and 
network control flows can be flexibly programmed to meet evolving security needs. By 
integrating this localized data processing strategy with adaptively calibrated PTZ camera 
systems, surveillance platforms can be transformed into intelligent monitoring solutions 
that are not only responsive but also context-aware and resource-efficient. This 
combination is well-suited for modern security systems requiring high reaction speeds, as 
well as military environments that demand real-time, high-precision spatial analysis. 
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In intelligent surveillance systems, beyond visual and analytical aspects, mobility also 
plays a significant role. One relevant approach involves the use of autonomous patrol robots 
powered by computer vision and artificial intelligence. Zheng et al. (2022) developed an 
enhanced path-planning method for indoor patrol robots using deep reinforcement 
learning (DRL). In their research, PTZ cameras were employed to capture spatial 
information, which was then processed by learning algorithms to automatically determine 
the robot’s movement direction and speed. The main focus of this approach was to refine 
the reward and punishment functions to allow faster algorithm convergence and produce 
optimal paths that avoid obstacles and reach targets (Zheng et al., 2022). This 
implementation demonstrates great potential for active robot-based surveillance, 
particularly in enclosed environments such as industrial facilities, shopping centers, or data 
centers. However, in dynamic operational settings, fog computing-based approaches play a 
critical role in enabling localized decision-making. 

Jing & Xue (2024) proposed an IoT optimization method based on fog computing, 
enhanced by an improved convolutional neural network (CNN). The refined CNN is used to 
continuously estimate values within the framework of a markov decision process, which is 
particularly suitable for navigation and robotic decision-making applications. By 
integrating the CNN architecture into fog nodes, analysis and response processes can be 
conducted closer to data sources such as robots or surveillance cameras, thereby reducing 
latency and increasing operational efficiency. The combination of deep reinforcement 
learning for navigation control and CNN in a fog computing environment enables patrol 
robots to respond to their surroundings rapidly and adaptively. This system not only 
optimizes patrol routes but also simultaneously performs visual analysis to detect nearby 
threats. The integration suggests that AI-powered autonomous robots can become an 
integral part of intelligent spatial surveillance systems that are efficient, context-aware, and 
capable of real-time response in modern security scenarios. 

When designing surveillance systems that are not only adaptive and intelligent but also 
spatially contextual, the integration of artificial intelligence with geographic information 
becomes essential. This approach, known as GeoAI, combines artificial intelligence, machine 
learning, and deep learning with geographic information systems. According to Choi (2023), 
GeoAI enables automatic and accurate spatial analysis for purposes such as object detection, 
land-use change mapping, and location-based tracking. These capabilities greatly support 
PTZ camera systems in dynamic surveillance and target tracking. The automatic processing 
of spatial imagery is further reinforced by research from Puttinaovarat & Horkaew (2022), 
who developed a geospatial platform for classifying green space areas using deep learning. 
Their system analyzes satellite imagery with high accuracy using a ZFNet-based model and 
presents results in real-time via a digital platform. This shows that the combination of GIS 
and deep learning can be employed not only for environmental monitoring but also to 
support priority area mapping and visual detection in spatial intelligence systems. In the 
context of PTZ cameras, such spatial understanding provides a foundation for more focused 
and contextually aware camera movements, ensuring that rotation and zoom target 
spatially significant areas or objects for further analysis. 

The effectiveness of PTZ camera-based monitoring systems depends on both the 
hardware's ability to capture high-quality imagery and the software's capacity to analyze 
this information within an accurate spatial context. Supporting this, the selection of camera 
sensors and the use of deep learning-based processing approaches are key to system 
success. A study by Llauradó et al. (2023) examined challenges in recognizing human faces 
from long distances, a common issue in surveillance systems deployed in public smart city 
spaces. Their method involved developing a performance-based evaluation of image 
sensors, considering object distance from the camera, lens focal length, and final face 
resolution in the frame. Using a restructured dataset based on long-range images from the 
Georgia tech and quality dataset for distance faces databases, they tested several sensor 
configurations and found that increasing focal length significantly improved face 
recognition accuracy to over 99% at distances of 15–20 meters. These findings provide 
valuable insights for determining the optimal positioning and specifications of PTZ cameras 

https://doi.org/10.61511/rstde.v2i2.2025.2249


Bashir & Arief (2025)    120 
 

 
RSTDE. 2025, VOLUME 2, ISSUE 2                                                                                                                https://doi.org/10.61511/rstde.v2i2.2025.2249 

in environments requiring precise identification, such as airports, border zones, or 
government buildings. 

Meanwhile, Huillca & Fernandes (2022) highlighted the role of conventional cameras 
as active spatial sensors through an innovative approach. They demonstrated that with just 
a single still image, a ship’s speed can be estimated accurately by analyzing wave patterns 
(Kelvin wakes) and applying principles of projective geometry. By leveraging homography 
and vanishing line estimation, they reconstructed the water surface in metric space, 
identified wave points, and calculated the ship’s speed. Validation using radar data as 
ground truth showed the method to be reliable. This confirms that cameras are not merely 
visual documentation tools but also accurate geospatial data sources that can be processed 
using AI-based analytical methods. By combining the optical capabilities of cameras with 
AI-driven spatial approaches, systems can dynamically focus on strategic areas, enhance 
monitoring accuracy, and generate deep geospatial intelligence—forming a critical pillar of 
future adaptive and intelligent surveillance systems. 

 

2. Methods 
 

 
Fig. 1. Brainstorm   

 

The Figure 1 illustrates a conceptual framework of a Pan-Tilt-Zoom (PTZ) camera 
control system for surveillance, integrated with artificial intelligence, geospatial data, and 
deep learning technologies. The framework begins with PTZ cameras that undergo 
calibration and integration, alongside the fusion of AI-based vision and geospatial data to 
enable spatial vision and adaptive surveillance. These capabilities support key functions 
such as anomaly recognition, adaptive surveillance with IoRT, and spatially responsive 
systems. At the core, deep learning serves as the foundation, enhancing the vision system 
while addressing implementation challenges. Furthermore, the system is evaluated through 
case studies, the utilization of distributed visual sensor networks, and deep learning–based 
automatic tracking, while also highlighting its prospects for future surveillance applications. 
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3. Results and Discussion 
 
3.1 Pan-tilt-zoom (PTZ) camera technology 
 

Pan-tilt-zoom (PTZ) cameras are vital components in modern surveillance systems due 
to their ability to move horizontally (pan), vertically (tilt), and perform image magnification 
(zoom). These features allow for flexible monitoring of wide areas using a single camera, 
which can be directed automatically or manually. In complex and dynamic urban 
environments, PTZ cameras are particularly useful for tracking object movements or 
suspicious activities without losing visual detail. In a study by Arroyo et al. (2021), an 
intelligent surveillance system was constructed by combining a fisheye camera (for full 180° 
× 360° coverage) with a PTZ camera (for focused observation). When the fisheye camera 
detects movement or activity in a particular area, the system automatically directs the PTZ 
camera to that location to capture clearer and more detailed images. This automated control 
is enabled by the implementation of ONVIF (Open Network Video Interface Forum), an open 
communication standard that allows various IP-based video surveillance devices to 
interconnect and interoperate. With ONVIF, PTZ cameras can be controlled through 
multiple video management systems, regardless of brand. Functions such as pan, tilt, zoom, 
preset positioning, and automated commands can be accessed over IP networks. ONVIF 
simplifies the integration and automation of surveillance systems, especially in AI- and 
geospatial-based intelligent systems. With its adaptive capability and high interoperability, 
ONVIF-enabled PTZ cameras are not merely auxiliary tools but integral elements of efficient 
and responsive intelligent monitoring systems. 

To ensure that PTZ cameras operate effectively within automated surveillance systems, 
proper calibration and integration of sensors, control systems, and other visual components 
are essential. In the study by Arroyo et al. (2021), a dual-mode surveillance system was 
designed using a fisheye camera for broad monitoring and a PTZ camera for detailed 
observation. To accurately direct the PTZ camera to targets detected within the fisheye 
image, the system employed a back-projection-based calibration approach. Unlike 
traditional re-projection methods, back-projection maps pixels from the fisheye image onto 
a flat plane (ground surface) where the object is assumed to exist. Assuming all objects move 
on a planar surface, the system geometrically calculates the target’s location and determines 
the angle required for the PTZ camera to be precisely directed to that point. This allows for 
continued observation without relying on stereo feature matching or complex triangulation 
(Arroyo et al., 2021). Additionally, the system uses the ONVIF protocol to integrate IP 
camera control directly into the software platform. ONVIF enables automated pan, tilt, and 
zoom controls of the PTZ camera based on detections from the fisheye camera, rendering 
the system responsive, real-time, and applicable in complex urban or traffic surveillance 
environments. 

Following successful calibration for accurate target localization within the observation 
field, the next stage involves automatic tracking using deep learning. In research by You et 
al. (2022), a PTZ-based tracking system was developed using the YOLOv4 algorithm for real-
time object detection in video streams. The detection outputs were then converted from 
image coordinates to real-world coordinates using the perspective-n-point (PnP) algorithm. 
Subsequently, a Pan-Tilt-Height (PTH) model was utilized to compute PTZ camera 
movements. This model translates the spatial position of a target into camera control 
instructions—namely pan (horizontal), tilt (vertical), and height—which correlate with 
camera positioning or zoom. Through this approach, the system is capable of autonomously 
maintaining focus on a moving target without human intervention. This method aligns 
closely with the previously discussed back-projection strategy in dual-camera systems, as 
both approaches leverage spatial information to guide the camera with high precision. 
Experiments demonstrated that this method yielded high accuracy, with a maximum 
position error of only 2.31 cm, an average of 1.245 cm, and a maximum camera direction 
error of 1.78°, with an average of 0.656°. Using this method, the PTZ camera can 
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automatically and precisely track moving targets within the monitored area, enhancing the 
effectiveness of AI-based spatial surveillance systems. 

Once the PTZ camera has been successfully integrated into an AI-based tracking 
system, the next step involves its deployment within a distributed camera network, or 
Visual Sensor Network (VSN). In a study by Giordano et al. (2022), PTZ cameras were used 
collaboratively alongside static cameras to create a real-time 3D monitoring system for 
indoor environments. This system is capable of detecting and tracking multiple targets 
simultaneously, thanks to the PTZ camera’s ability to adjust its viewing angle and zoom level 
based on object movement dynamics. To efficiently manage camera positioning, the system 
employed a game theory approach that enables each PTZ camera to make optimal decisions. 
Simulation results showed that the system could reduce overlapping coverage areas 
between cameras and maintain high tracking accuracy, with an average tracking error of 
only 0.656°, and a maximum of 1.78°. These advantages were achieved without a centralized 
control unit, making the system more scalable and adaptive. This integration strongly 
supports the earlier discussed PTH model, as the spatial positions of targets can be directly 
utilized by PTZ cameras in the VSN to conduct intelligent, coordinated tracking in real-world 
environments. 

After demonstrating the effectiveness of PTZ cameras in distributed systems like VSNs, 
field studies illustrate how this technology is applied in real-world scenarios. In the Remote 
AFIS (Aerodrome Flight Information Service) project, Reuschling & Jakobi (2022) 
developed a remote tower surveillance system using a combination of panoramic and PTZ 
cameras. With the aid of a VR headset, operators could intuitively control the PTZ camera; 
however, challenges such as cybersickness caused by abrupt camera movements and high 
latency in camera responses were noted. On the other hand, Church et al. (2024) evaluated 
the effectiveness of zoom cameras mounted on drones, comparing the performance of 
optical, digital, and hybrid zoom types. Their findings revealed that hybrid zoom cameras 
with visual computing capabilities could accurately read livestock ear tags from a distance 
of up to 60 meters—demonstrating a performance closely aligned with PTZ cameras for 
detailed long-range observation. These studies show that while PTZ cameras are highly 
reliable, their real-world integration still faces practical challenges such as motion stability, 
bandwidth limitations, and user comfort. 

PTZ cameras play a crucial role in modern surveillance systems through their 
automatic pan, tilt, and zoom capabilities. When integrated with deep learning and spatial 
calibration, they enable real-time, high-precision target tracking. In distributed visual 
networks, PTZ cameras operate collaboratively to ensure efficient coverage. Real-world 
case studies confirm their field effectiveness, although issues such as latency and motion 
smoothness require further optimization to enhance system performance. 
 
3.2 Deep learning in vision systems 
 

PTZ (Pan-Tilt-Zoom) cameras require an intelligent visual system to enable automatic 
and adaptive object tracking. The primary role of deep learning in this system is to serve as 
a signal processing unit capable of dynamically interpreting and responding to image data. 
Convolutional neural networks (CNN) are a fundamental pillar of modern computer vision 
due to their hierarchical and progressive ability to extract spatial features from images. 
Research by Alzubaidi et al. (2021) affirms that CNN enable richer visual representations 
without the need for manual feature engineering, laying the groundwork for PTZ cameras 
to recognize objects with high precision. On the other hand, approaches such as imitation 
learning pave the way for PTZ cameras to learn from observations, for instance, by tracking 
keypoints of moving objects. This “learning by observing” mechanism enhances the 
camera's adaptability, allowing it to continuously evolve from visual data (Sun et al., 2022). 

To ensure PTZ cameras can respond to object movement accurately and in real-time, a 
visual detection system is needed that is not only reliable but also computationally efficient. 
When surveillance systems must handle continuous video streams—especially in complex 
environments such as urban traffic or public spaces—processing efficiency becomes as 
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crucial as accuracy. Therefore, selecting an appropriate CNN architecture plays a strategic 
role in designing an effective vision system for PTZ cameras. The study by Junos et al. (2022) 
highlights how lightweight CNN architectures, such as those based on MobileNetV2, can be 
employed for object recognition in hardware-constrained systems. They demonstrated that 
the combination of bottleneck convolutions and squeeze-and-excitation (SE) mechanisms 
not only maintains human detection accuracy in video streams but also significantly reduces 
processing latency. This approach is particularly relevant for PTZ camera integration, as it 
allows the system to operate smoothly under real-time constraints. 

In addition, advancements in spatial modeling offer further value in enhancing the 
initial capabilities of vision systems. The research by Fuertes et al. (2022) on human 
detection using omnidirectional cameras illustrates how a spatial grid approach with a 
foveatic classifier can focus processing resources on the most relevant areas within an 
image. This strategy results in much greater processing efficiency, especially when applied 
as the initial layer in a PTZ camera system. When a fisheye camera captures a wide area and 
detects movement, such a system can quickly redirect the PTZ camera to the relevant region 
for detailed observation. 

This interplay reinforces the concept of a dual-mode system previously described, in 
which the combination of a wide-angle camera and a PTZ camera distributes roles between 
broad detection and focused observation. In this system, detection speed and model 
efficiency critically determine the PTZ camera’s responsiveness in adjusting its pan, tilt, and 
zoom angles. The use of lightweight CNN and adaptive spatial processing serves as a crucial 
bridge between initial visual sensors and the camera's motion mechanisms. Thus, accuracy 
alone is not the primary parameter in a PTZ-based vision system—efficiency in the 
underlying CNN architecture is equally vital. The combination of intelligent spatial 
processing and lightweight models opens the door for PTZ systems to operate more 
adaptively, energy-efficiently, and reliably over time, even when exposed to dynamic 
operational conditions and massive visual data. 

Once the vision system efficiently detects an object, the next challenge is translating the 
detection results into autonomous PTZ camera control. At this stage, deep learning 
functions not only as a visual recognizer but also as a motion control mechanism. PTZ 
cameras, with their pan, tilt, and zoom capabilities, offer substantial flexibility in 
surveillance, but this potential is only maximized if the system can be intelligently and 
adaptively controlled. A promising approach is demonstrated by Zhai & Zhang (2022), who 
developed a method for detecting low-flying UAV (Unmanned Aerial Vehicle) targets using 
an enhanced YOLOv3 model. In addition to adapting the YOLO architecture for greater 
sensitivity to small and fast-moving targets, they also integrated a PID controller to directly 
steer the PTZ camera toward detected targets. This system is capable of autonomously 
keeping the object centered within the field of view, eliminating the need for manual 
intervention. This aligns well with the core principle of PTZ systems based on Pan-Tilt-
Height (PTH), where the target's position in image coordinates is converted into physical 
parameters for camera angle control. 

A more applied system was developed by Fan et al. (2021), in the context of a UAV-
based Explosive Ordnance Disposal (EOD) system. They combined a PTZ camera with a 
YOLOv5 algorithm trained to detect grenades. The visual detection results were then used 
to direct the PTZ in real time toward targets detected from the air. Interestingly, this process 
involved not only image detection but also integration between remote control mechanisms 
and CNN-based recognition algorithms, showcasing how visual and control components can 
be merged into a unified intelligent system. In the context of a dual-mode system, this 
approach mirrors the division of roles where the fisheye camera serves as the initial 
detector, and the PTZ camera performs detailed tracking. Once an object is imaged, its 
coordinates are computed and translated into pan-tilt commands via back-projection or the 
PTH model. Without CNN and detection models like YOLO, this PTZ control process would 
be significantly slower or potentially non-automated. Thus, the integration of CNN (as 
detectors) with the camera control system (as actuators) positions deep learning not just as 
a recognition tool but also as a precise motion controller. This synergy enables the 
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development of adaptive vision systems capable of tracking objects in dynamic 
environments without human intervention. 

In developing autonomous PTZ camera systems, the performance of the vision system 
cannot rely solely on sophisticated deep learning architectures. More critically, the CNN 
model must adapt to real-world visual conditions, such as low lighting, low-contrast objects, 
or image noise from high zoom levels. To accurately follow targets in suboptimal conditions, 
the CNN model must demonstrate strong generalization capabilities. This means the model 
must remain stable even when exposed to environmental variations not explicitly 
represented in its training data. Two relevant field studies show how CNN can be effectively 
implemented in real-world visual systems. In a study by García-Segura et al. (2023), CNN 
were applied to road inspection videos to detect surface damage such as cracks and wear. 
The images were captured from moving vehicles under diverse road conditions, including 
direct sunlight, tree shadows, and heavy traffic. The model successfully recognized damage 
patterns with high accuracy, illustrating that CNN can function robustly even under varying 
textures, contrasts, and visual noise—conditions commonly encountered in PTZ systems. 

Meanwhile, Ren et al. (2022) investigated the detection of residential energy systems 
(e.g., solar panels) from drone imagery using a U-Net-based CNN with a ResNet50 backbone. 
The main challenges included unstable image quality, low resolution, extreme viewing 
angles, and shadow interference. However, experimental results showed that the model 
maintained high accuracy even under far-from-ideal visual conditions. This success was 
attributed to training on diverse and realistic datasets rather than synthetic or overly 
structured data. Both studies provide concrete evidence that CNN models trained with 
varied and realistic data possess high adaptability—an essential quality for PTZ cameras, 
which must track objects not in laboratory settings but in real-world scenarios: in public 
spaces, under changing lighting conditions, and with rapidly moving objects. The 
effectiveness of PTH-based PTZ tracking systems hinges on initial visual precision. If a CNN 
lacks generalization, minor angular errors from misdetection could cause loss of tracking 
focus. 

Moreover, the findings from these two studies underscore that CNN model robustness 
cannot be separated from training strategies. Architectural depth alone is insufficient; data 
diversity, visual augmentation, and contextual validation are critical to ensuring the model 
is field-deployable. Therefore, in PTZ camera systems, building representative datasets and 
conducting comprehensive validation are not optional additions—they are fundamental 
requirements. In conclusion, CNN generalization is not merely an added advantage but a 
foundational pillar of reliable PTZ vision systems across diverse operational conditions. 
Drawing from empirical field evidence, this approach offers a practical solution to bridge 
the gap between technical capabilities and real-world application needs. 

Finally, after discussing how CNN can be integrated, optimized, and generalized within 
PTZ camera vision systems, one crucial aspect remains: model validation. Deep learning 
models will only be effective in autonomous surveillance if they can maintain stable 
performance under real-world conditions—not just during laboratory trials. Kattenborn et 
al. (2022) warned that many CNN models that appear accurate during internal evaluation 
often fail in deployment because they are validated on data too similar to the training set. 
In PTZ systems, even minor detection errors can result in incorrect pan or tilt directions, 
causing the camera to lose track of its target. Research by Li et al. (2022) reinforces the 
importance of testing under various image conditions. Models must be validated on visual 
variations that approximate field scenarios: low lighting, fast-moving objects, and complex 
backgrounds. Without this, PTZ systems that seem precise during testing may become 
unresponsive in deployment. Rigorous validation is not merely about numerical accuracy—
it involves building trust that the PTZ camera can truly “see and react” correctly, under any 
circumstances and at any time. 
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3.3 Integration of AI vision and geospatial data in PTZ camera control 
 

The integration of visual artificial intelligence (AI vision) and geospatial data forms a 
fundamental basis for modern surveillance systems based on PTZ (Pan-Tilt-Zoom) cameras. 
These devices no longer serve merely as passive observers; they have evolved into active 
systems capable of understanding visual-spatial contexts and automatically adjusting 
monitoring direction and focus. Google earth engine (GEE) serves as the backbone for large-
scale spatial data processing as well as a platform for training and deploying cloud-based 
machine learning algorithms. Yang et al. (2022) demonstrated how GEE provides access to 
multi-temporal satellite imagery and integrates AI techniques for automated spatial 
analysis, including land classification, change detection, and spatial object tracking. 

Meanwhile, the integration of GIS technology and augmented reality (AR) introduces a 
new dimension in spatial interaction, especially for PTZ camera control interfaces. In a study 
by Bazargani et al. (2022), it was shown how AR-GIS systems enable users to visualize 
spatial objects directly within real-world environments through digital overlays, facilitating 
positioning and location-based visual decision-making. However, achieving intelligent 
spatial decision-making presents significant challenges in managing and integrating 
geospatial big data. Al-Yadumi et al. (2021) highlighted that data source diversity, 
heterogeneous data formats, and semantic integration requirements pose major obstacles 
to consolidating spatial information, particularly under demands for real-time analytics and 
system interoperability. In the context of PTZ cameras, successful geospatial data 
integration directly influences the effectiveness of camera orientation based on priority 
zones or high-risk points. 

In intelligent PTZ camera surveillance systems, the camera’s ability to respond to the 
target’s position in the real world is a critical requirement. The mechanisms controlling 
camera direction and zoom must be closely linked with spatial data and object behavior to 
enable adaptive monitoring, in line with the pan-tilt-height (PTH) control principle. Fahim 
et al. (2023) introduced AcTrak, an automatic PTZ camera control framework based on 
reinforcement learning. The camera dynamically zooms in on detected objects and zooms 
out to detect new objects appearing within the surveillance area. AcTrak is capable of 
selecting the optimal camera configuration based on the target’s current status, optimizing 
the trade-off between object tracking and area coverage. 

In traffic monitoring contexts, PTZ cameras are also employed to accurately measure 
vehicle speed and position using the inverse perspective mapping (IPM) method. This 
method performs real-time camera calibration using road markings and vanishing points, 
transforming camera views into actual road coordinates (Shi et al., 2023). From this, vehicle 
positions and potential risks can be directly computed. This technique enables PTZ cameras 
to function as active spatial sensors in complex traffic surveillance. The system’s accuracy 
heavily depends on object detection capability, especially for small objects in open 
environments or remote sensing scenarios. Shivappriya et al. (2021) developed the AAF-
Faster RCNN method, which integrates additive activation functions into cascade detection 
layers. This model enhances small object detection with clearer boundaries and faster 
convergence, making it highly suitable to support PTZ systems that require accuracy even 
at small scales or long distances. 

The ability of PTZ cameras to detect, track, and understand the contextual activities of 
objects is central to adaptive spatial-visual intelligence. Particularly in dense and dynamic 
environments, rapid small object detection and behavior interpretation become 
increasingly important. The latest detection models, such as DC-YOLOv8, introduce 
significant improvements in small object detection through architectural modifications 
ranging from novel downsampling methods to enhanced feature fusion. Lou et al. (2023) 
demonstrated that this algorithm improves detection accuracy on small-object datasets 
such as VisDrone and TinyPerson, making DC-YOLOv8 highly relevant for directing PTZ 
cameras toward small objects in open or public spaces. Meanwhile, model selection must 
also consider efficiency. Nepal & Eslamiat (2022) compared YOLOv3, YOLOv4, and YOLOv5 
in the context of UAV emergency landing systems. Their results show that YOLOv5 excels in 
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accuracy, albeit with slight latency compared to YOLOv3. This combination of speed and 
precision supports its application in PTZ camera systems for real-time responses to critical 
events such as intrusions or evacuations. 

However, AI vision capabilities extend beyond object recognition. Another crucial 
aspect is human activity classification. Arshad et al. (2022) noted that most current human 
activity recognition (HAR) systems rely on visual data and utilize CNN and LSTM 
architectures. PTZ cameras integrating these models can identify activities such as walking, 
running, or aggressive behavior, enabling automatic camera redirection based on activity 
intensity rather than mere physical location. Advanced feature fusion approaches are also 
explored by Khan et al. (2021), who proposed serial-based extended fusion and weighted 
classification methods (kurtosis-controlled KNN) for human action recognition. This 
approach maintains high accuracy with low computational overhead, making it highly 
suitable for edge-device-based PTZ cameras that require fast, energy-efficient, and 
memory-efficient responses. By combining lightweight object detection models, real-time 
tracking, and efficient human action recognition, PTZ camera systems transform from 
passive observers into active surveillance agents that intelligently respond to spatial 
presence, movement, and behavior according to visual-spatial cues. Rather than merely 
following objects based on visual detection alone, modern PTZ camera systems are designed 
to operate based on comprehensive spatial understanding. This means camera decisions to 
highlight or monitor an area consider not only object presence but also spatial structure, 
environmental risks, and threat potentials grounded in geospatial context. 

For this purpose, point cloud-based spatial segmentation has become an important 
approach, especially in complex areas such as dense urban zones or disaster terrains. 
However, point cloud data tend to be unstable due to sparsity, noise, and class imbalance. 
Grilli et al. (2023) proposed the use of knowledge enhanced neural networks (KENN), which 
combine neural network learning with symbolic logic rules. This system enhances spatial 
segmentation with semantic context, enabling PTZ cameras to more accurately direct their 
views based on real spatial structures rather than mere image pixels. 

Furthermore, in managing disaster-prone or priority monitoring zones, risk-based 
decision-making approaches are necessary. Gohil et al. (2024) demonstrated that fuzzy 
logic can be used to build multi-hazard models based on environmental parameters such as 
rainfall, elevation, and land use. Fuzzy logic mimics human reasoning by accommodating 
uncertainty and ambiguity; rather than rigid binary categories (true/false), fuzzy values can 
range continuously (e.g., “moderately high” or “slightly vulnerable”). These fuzzy values are 
then classified into different vulnerability levels, enabling PTZ cameras to automatically 
prioritize their monitoring focus on high-risk zones. Such spatial integration has also been 
validated in field implementations, as shown by Whitehurst et al. (2021), who employed 
drones to rapidly map disaster-affected areas, including assessing building damage and 
flood potential. These data were subsequently integrated into Geographic Information 
System (GIS) platforms to support layered monitoring. In PTZ camera contexts, drone 
mapping results can be directly linked to camera control systems, expanding surveillance 
coverage based on spatial conditions identified from aerial data. The integration of 3D shape 
understanding, fuzzy risk assessment, and drone data opens the path for PTZ cameras to act 
not only as “observers” but as “interpreters” of space, risk, and scenarios. Such systems 
evolve beyond passive monitoring into spatially intelligent decision-making networks. 

In today’s intelligent surveillance ecosystem, PTZ cameras no longer function as static 
monitoring devices but as active components within distributed networks known as the 
Internet of Robotic Things (IoRT). IoRT is an integrative concept combining sensors, robots, 
monitoring devices, and cloud- or edge-based control systems to create responsive and 
adaptive environments. Within such systems, PTZ cameras serve as “eyes” that not only see 
but also understand and react to the environment based on collective spatial and visual 
inputs. According to Andronie et al. (2023), the success of IoRT in surveillance depends on 
components such as spatial big data management, sensor fusion, and deep learning 
algorithms for object and event detection. Sensor fusion allows the system to unify data 
from various devices—for example, UAV imagery, motion detectors, and fixed cameras—to 
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provide a comprehensive understanding of spatial situations. In these systems, PTZ 
cameras can autonomously adjust direction and zoom based on information from other 
nodes, such as when a UAV detects suspicious movement in areas beyond fixed camera 
coverage. 

To ensure responsiveness to extraordinary events, anomaly detection capabilities are 
required. Visual anomalies refer to behavioral patterns or events in video that deviate from 
the norm, such as sudden fights, fleeing, or contextually inappropriate activities. Ullah et al. 
(2021) developed an anomaly detection framework based on MobileNetV2 and residual 
LSTM augmented with attention mechanisms. This combination efficiently recognizes 
temporal patterns in video with low inference time and high accuracy. Tests using public 
video datasets (e.g., UCF-Crime and UMN) showed this system outperforms conventional 
anomaly detection models in speed and precision. For edge-based implementations, as 
needed in PTZ cameras, this model is ideal since it does not require high-power hardware 
to operate. This means PTZ cameras installed at strategic locations can locally process 
captured video to detect anomalies, then send alerts or signals to control centers or other 
IoRT nodes. Responses may include redirecting other cameras to the incident location or 
activating public warning systems. Thus, PTZ cameras within IoRT frameworks become not 
just observation tools but integral parts of collaborative intelligent systems combining 
spatial processing, machine learning, and inter-device communication. This creates 
surveillance systems that are not only reactive but also predictive and context-aware. 
 

4. Conclusions 
 

The utilization of deep learning technology in pan-tilt-zoom (PTZ) camera control 
systems marks a new chapter in the development of intelligent geospatial surveillance 
systems. As threats to critical infrastructure and public safety become increasingly complex, 
the integration of artificial intelligence vision (AI vision), PTZ cameras, and spatial data 
serves as a vital foundation for building visual intelligence systems capable of detecting, 
analyzing, and responding to situations in real time. PTZ cameras, with their capabilities for 
horizontal rotation (pan), vertical movement (tilt), and optical zoom, serve as central 
components for monitoring wide areas with a single device. However, their effectiveness 
depends on precise hardware calibration, accurate image processing, and automated 
machine learning-based control mechanisms. The implementation of a dual-mode system, 
which combines fisheye lenses for wide coverage with PTZ cameras for focused 
observation, significantly enhances object detection accuracy. 

Within this system, deep learning plays a pivotal role in visual analysis. Convolutional 
neural networks (CNN) are employed to extract visual features hierarchically and 
adaptively, reducing reliance on manual feature engineering. Lightweight architectures 
such as MobileNetV2 enable efficient image processing without compromising accuracy. 
Moreover, approaches based on spatial grids and foveatic classifiers accelerate object 
detection by focusing on salient areas within the image. The integration of AI-based vision 
systems with spatial data enriches the operational context of PTZ cameras. Platforms like 
google earth engine (GEE) support large-scale spatial analysis, while augmented reality 
geographic information systems (AR-GIS) enhance real-world camera control accuracy. 
Segmentation based on knowledge-enhanced neural networks (KENN) applied to point 
cloud data enables the interpretation of complex spatial structures, improving spatially-
informed surveillance capabilities. 

In dynamic surveillance environments, the ability to recognize human activity and 
detect visual anomalies is crucial. The combination of Convolutional Neural Networks 
(CNN) with Long Short-Term Memory (LSTM) networks and attention mechanisms allows 
systems to understand complex behavioral patterns, such as aggressive actions, escape 
attempts, or other abnormal activities. This integration transforms PTZ cameras into active 
surveillance agents capable of responding rapidly and adaptively to situational changes. 
Further development of the internet of robotic things (IoRT) expands the scope of 
surveillance systems by positioning PTZ cameras as part of a collaborative network of 
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intelligent sensors. In this ecosystem, PTZ cameras coordinate with unmanned aerial 
vehicles (UAVs), patrol robots, and fixed sensors, collectively forming a data-driven, 
adaptive monitoring system. The use of sensor fusion techniques enhances situational 
awareness and improves decision-making accuracy. 

Nevertheless, challenges such as latency in remote control, cybersickness effects from 
virtual reality (VR) integration, and the need to validate deep learning models against real-
world visual conditions demand serious consideration. Therefore, system development 
must focus not only on technical reliability but also on the adaptability to operational 
dynamics in the field. Overall, the integration of deep learning, PTZ cameras, and geospatial 
data presents significant potential for building next-generation surveillance systems that 
are proactive, highly precise, responsive, and spatially analytical. These systems not only 
improve monitoring effectiveness in public spaces, industrial zones, and defense facilities 
but also strengthen the development of spatial intelligence—an increasingly critical 
component of national security in the evolving digital era. 
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