Optimizing diabetic retinopathy therapy with precision medicine: Can we do that in Indonesia?

Authors

  • Nazwa Septiriana Putri Pharmacy Study Program, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
  • Melisa Intan Barliana Biological Pharmacy Study Program, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia

DOI:

https://doi.org/10.61511/phraj.v3i1.2025.1840

Keywords:

diabetic retinopathy, precision medicine

Abstract

Background: Diabetes is one of the most common diseases in the world, including in Indonesia. High blood sugar levels in diabetics can cause various complications, one of which is diabetic retinopathy. The treatment used in diabetic retinopathy does not fully provide the desired therapeutic effect in all patients. Therefore, a study was conducted on the prescription drug approach to optimize diabetic retinopathy therapy. Methods: This article was prepared using the literature review method by collecting and analyzing relevant literature sources. Findings: This study reveals that diabetic retinopathy is a complication of diabetes whose development can be influenced by genetic and environmental factors of the patient. Precision medicine can be applied in determining the best therapy for diabetic retinopathy by analyzing the clinical condition history, molecular and biochemical biomarkers of patients using artificial intelligence or machine learning. Conclusion: optimization of diabetic retinopathy therapy can be done with a precision medicine approach by analyzing genetic factors and patient environmental factors. However, there are still some challenges in its application in Indonesia. Novelty/Originality of this article: analysis of the application of precision medicine to provide the best therapy for patients in Indonesia.

References

Abul-Husn, N. S., & Kenny, E. E. (2019). Personalized Medicine and the Power of Electronic Health Records. Cell, 177(1), 58–69. https://doi.org/10.1016/j.cell.2019.02.039.

Agarwal, A., Soliman, M. K., Sepah, Y. J., Do, D. V., & Nguyen, Q. D. (2014). Diabetic Retinopathy: Variations in Patient Therapeutic Outcomes and Pharmacogenomics. Pharmacogenomics and Personalized Medicine, 7, 399-409. https://doi.org/10.2147/PGPM.S52821.

Agyeman A. A., Ofori-Asenso R. (2015). Perspective: does personalized medicine hold the future for medicine? J. Pharm. Bioallied. Sci, 7, 239–244. https://doi.org/10.4103/0975-7406.160040.

Antar, S. A., Ashour, N. A., Sharaky, M., Khattab, M., Ashour, N. A., Zais, R. T., Roh, E. J., Elkamhawy, J., & Al-Karmalawy, A.A. (2023). Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomedicine and Pharmacotherapy, 168, 115734. https://doi.org/10.1016/j.biopha.2023.115734.

Arabi, A., Tadayoni, R., Ahmadieh, H., Shahraki, T., & Nikkhah, H. (2022). Update on Management of Non-proliferative Diabetic Retinopathy without Diabetic Macular Edema; Is There a Paradigm Shift?. Journal of ophthalmic & vision research, 17(1), 108–117. https://doi.org/10.18502/jovr.v17i1.10175.

Ashraf M, Souka A, & Adelman R. (2016). Predicting outcomes to anti-vascular endothelial growth factor (VEGF) therapy in diabetic macular oedema: a review of the literature. Br J Ophthalmol, 100(12), 1596–1604. https://doi.org/10.1136/bjophthalmol-2016-308388.

Ausi, Y., Barliana, M. I., Postma, M. J., & Suwantika, A. A. (2024). One Step Ahead in Realizing Pharmacogenetics in Low- and Middle-Income Countries: What Should We Do?. Journal of multidisciplinary healthcare, 17, 4863–4874. https://doi.org/10.2147/JMDH.S458564.

Bahr, T. A., & Bakri, S. J. (2023). Update on the Management of Diabetic Retinopathy: Anti-VEGF Agents for the Prevention of Complications and Progression of Nonproliferative and Proliferative Retinopathy. Life (Basel, Switzerland), 13(5), 1098. https://doi.org/10.3390/life13051098.

Bhatwadekar, A. D., Shughoury, A., Belamkar, A., & Ciulla, T. A. (2021). Genetics of Diabetic Retinopathy, a Leading Cause of Irreversible Blindness in the Industrialized World. Genes, 12(8), 1200. https://doi.org/10.3390/genes12081200.

Cabrera, A. P., Monickaraj, F., Rangasamy, S., Hobbs, S., McGuire, P., & Das, A. (2020). Do Genomic Factors Play a Role in Diabetic Retinopathy? Journal of Clinical Medicine, 9(1), 216. https://doi.org/10.3390/jcm9010216.

Chawan-Saad, J., Wu, M., Wu, A., & Wu, L. (2019). Corticosteroids for Diabetic Macular Edema. Taiwan journal of ophthalmology, 9(4), 233–242. https://doi.org/10.4103/tjo.tjo_68_19.

Chetoui, M., & Akhloufi, M. A. (2020). Explainable end-to-end deep learning for diabetic retinopathy detection across multiple datasets. Journal of medical imaging (Bellingham, Wash.), 7(4), 044503. https://doi.org/10.1117/1.JMI.7.4.044503.

Chong, H. Y., Allotey, P. A., & Chaiyakunapruk, N. (2018). Current landscape of personalized medicine adoption and implementation in Southeast Asia. BMC medical genomics, 11(1), 94. https://doi.org/10.1186/s12920-018-0420-4.

Chua, J., Lim, C. X. Y., Wong, T. Y., & Sabanayagam, C. (2018). Diabetic Retinopathy in the Asia-Pacific. Asia-Pacific journal of ophthalmology (Philadelphia, Pa.), 7(1), 3–16. https://doi.org/10.22608/APO.2017511.

Cleland C. (2023). Comparing the International Clinical Diabetic Retinopathy (ICDR) severity scale. Community eye health, 36(119), 10. https://pubmed.ncbi.nlm.nih.gov/37600672/

Dai, L., Sheng, B., Chen, T., Wu, Q., Liu, R., Cai, C., Wu, L., Yang, D., Hamzah, H., Liu, Y., Wang, X., Guan, Z., Yu, S., Li, T., Tang, Z., Ran, A., Che, H., Chen, H., Zheng, Y., Shu, J., … Jia, W. (2024). A deep learning system for predicting time to progression of diabetic retinopathy. Nature medicine, 30(2), 584–594. https://doi.org/10.1038/s41591-023-02702-z.

Das, A., McGuire, P. G., & Rangasamy, S. (2015). Diabetic Macular Edema: Pathophysiology and Novel Therapeutic Targets. Ophthalmology, 122(7), 1375–1394. https://doi.org/10.1016/j.ophtha.2015.03.024.

Do, D. V., Wang, X., Vedula, S. S., Marrone, M., Sleilati, G., Hawkins, B. S., & Frank, R. N. (2015). Blood pressure control for diabetic retinopathy. The Cochrane database of systematic reviews, 1, CD006127. https://doi.org/10.1002/14651858.CD006127.pub2.

Drugan, T., & Leucuța, D. (2024). Evaluating Novel Biomarkers for Personalized Medicine. Diagnostics, 14(6), 587. https://doi.org/10.3390/diagnostics14060587.

Elvira, E., & Suryawijaya E. E. (2019). Retinopati Diabetes. Continuing Medical Innovation, 46(3), 220-224. https://doi.org/10.55175/cdk.v46i3.514.

Ezhilvendhan, K., Sathiyamoorthy, A., Prakash, B. J., Bhava, B. S., & Shenoy, A. (2021). Association of Dyslipidemia with Diabetic Retinopathy in Type 2 Diabetes Mellitus Patients: A Hospital-Based Study. Journal of pharmacy & bioallied sciences, 13(2), S1062–S1067. https://doi.org/10.4103/jpbs.jpbs_164_21.

Ginsburg, G. S., & Phillips, K. A. (2018). Precision Medicine: From Science To Value. Health affairs (Project Hope), 37(5), 694–701. https://doi.org/10.1377/hlthaff.2017.1624.

Gonzalez-Cortes, J. H., Martinez-Pacheco, V. A., Gonzalez-Cantu, J. E., Bilgic, A., de Ribot, F. M., Sudhalkar, A., Mohamed-Hamsho, J., Kodjikian, L., & Mathis, T. (2022). Current Treatments and Innovations in Diabetic Retinopathy and Diabetic Macular Edema. Pharmaceutics, 15(1), 122. https://doi.org/10.3390/pharmaceutics15010122.

Haque, M., Islam, T., Sartelli, M., Abdullah, A., & Dhingra, S. (2020). Prospects and Challenges of Precision Medicine in Lower- and Middle-Income Countries: A Brief Overview. Bangladesh Journal of Medical Science, 19(1), 32-47. https://doi.org/10.3329/bjms.v19i1.43871.

Hasanzad, M., Sarhangi, N., Ehsani Chimeh, S., Ayati, N., Afzali, M., Khatami, F., Nikfar, S., & Aghaei Meybodi, H. R. (2021). Precision medicine journey through omics approach. Journal of diabetes and metabolic disorders, 21(1), 881–888. https://doi.org/10.1007/s40200-021-00913-0.

Hisan, U. K., & Amri, M. M. (2023). Recommendation of precision medicine application in Indonesia from multiple perspective: a review. International Journal of Public Health Science (IJPHS), 12(1): 225-238. https://doi.org/10.11591/ijphs.v12i1.22010.

Hossain, M. J., Al-Mamun, M., & Islam, M. R. (2024). Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health science reports, 7(3), e2004. https://doi.org/10.1002/hsr2.2004.

Jenkins, A. J., Joglekar, M. V., Hardikar, A. A., Keech, A. C., O'Neal, D. N., & Januszewski, A. S. (2015). Biomarkers in Diabetic Retinopathy. The review of diabetic studies : RDS, 12(1-2), 159–195. https://doi.org/10.1900/RDS.2015.12.159.

Jin, K., & Zhang, C. (2023). Personalized Medicine in Ophthalmic Diseases: Challenges and Opportunities. Journal of personalized medicine, 13(6), 893. https://doi.org/10.3390/jpm13060893.

Kamelia, T., and Rahayu, N. A. (2023). Perkembangan Precision Medicine di Indonesia. Indonesia Journal Chest, 10(1), 1-12. https://www.indonesiajournalchest.com/index.php/IJC/issue/view/223.

Kansora, M. B., & Goldhardt, R. (2019). Decision Making in Proliferative Diabetic Retinopathy Treatment. Current ophthalmology reports, 7(1), 45–50. https://doi.org/10.1007/s40135-019-00198-w.

Kim, H. J., & Kim, K. I. (2022). Blood Pressure Target in Type 2 Diabetes Mellitus. Diabetes & metabolism journal, 46(5), 667–674. https://doi.org/10.4093/dmj.2022.0215.

Kowluru R. A. (2023). Cross Talks between Oxidative Stress, Inflammation and Epigenetics in Diabetic Retinopathy. Cells, 12(2), 300. https://doi.org/10.3390/cells12020300.

Kąpa, M., Koryciarz, I., Kustosik, N., Jurowski, P., & Pniakowska, Z. (2024). Modern Approach to Diabetic Retinopathy Diagnostics. Diagnostic, 14(17), 1846. https://doi.org/10.3390/diagnostics14171846.

Li W, Chen S, Mei Z, Zhao F, Xiang Y. (2019). Polymorphisms in Sorbitol-Aldose Reductase (Polyol) Pathway Genes and Their Influence on Risk of Diabetic Retinopathy Among Han Chinese. Med Sci Monit, 20(25), 7073-7078. https://doi.org/10.12659/MSM.917011.

Lim, J. I., Regillo, C. D., Sadda, S. R., Ipp, E., Bhaskaranand, M., Ramachandra, C., & Solanki, K. (2022). Artificial Intelligence Detection of Diabetic Retinopathy: Subgroup Comparison of the EyeArt System with Ophthalmologists' Dilated Examinations. Ophthalmology science, 3(1), 100228. https://doi.org/10.1016/j.xops.2022.100228.

Liu, L., Quang, N. D., Banu, R., Kumar, H., Tham, Y. C., Cheng, C. Y., Wong, T. Y., & Sabanayagam, C. (2020). Hypertension, blood pressure control and diabetic retinopathy in a large population-based study. PloS one, 15(3), e0229665. https://doi.org/10.1371/journal.pone.0229665.

Liu, R., Wang, X., Aihara, K., & Chen, L. (2014). Early diagnosis of complex diseases by molecular biomarkers, network biomarkers, and dynamical network biomarkers. Medicinal research reviews, 34(3), 455–478. https://doi.org/10.1002/med.21293.

Miller N.A., Farrow E.G., & Gibson M. (2015) A 26-hour System of Highly Sensitive Whole Genome Sequencing for Emergency Management of Genetic Diseases. Genome Med, 7, 100. https://doi.org/10.1186/s13073-015-0221-8.

Molla, G., & Bitew, M. (2024). Revolutionizing Personalized Medicine: Synergy with Multi-Omics Data Generation, Main Hurdles, and Future Perspectives. Biomedicines, 12(12), 2750. https://doi.org/10.3390/biomedicines12122750.

Naithani, N., Sinha, S., Misra, P., Vasudevan, B., & Sahu, R. (2021). Precision medicine: Concept and tools. Medical journal, Armed Forces India, 77(3), 249–257. https://doi.org/10.1016/j.mjafi.2021.06.021.

Nga, V.V., Minh, N.T.B., Dung, D.T.M., Anh, N.T.L., Huu, N.C., Anh, B.T.V., Hiep, N. X., Ha, H.T.T., Khanh, T.V., Thom, V.T., & Thanh, L.C. (2023). Risk factors related to diabetic retinopathy in Vietnamese patients with type 2 diabetes mellitus. Endocrine and Metabolic Science, 13(1), 100145. https://doi.org/10.1016/j.endmts.2023.100145.

Ortega, V. E., & Meyers, D. A. (2014). Pharmacogenetics: implications of race and ethnicity on defining genetic profiles for personalized medicine. The Journal of allergy and clinical immunology, 133(1), 16–26. https://doi.org/10.1016/j.jaci.2013.10.040.

Paré G., & Kitsiou, S. (2017). Chapter 9 Methods for Literature Reviews. In: Lau F, Kuziemsky C, editors. Handbook of eHealth Evaluation: An Evidence-based Approach [Internet]. Victoria (BC): University of Victoria. https://www.ncbi.nlm.nih.gov/books/NBK481583/

Pei, X., Huang, D., & Li, Z. (2024). Genetic insights and emerging therapeutics in diabetic retinopathy: from molecular pathways to personalized medicine. Frontiers in genetics, 15, 1416924. https://doi.org/10.3389/fgene.2024.1416924.

Rajalakshmi, R., Prathiba, V., & Mohan, V. (2016). Does tight control of systemic factors help in the management of diabetic retinopathy?. Indian journal of ophthalmology, 64(1), 62–68. https://doi.org/10.4103/0301-4738.178146.

Rathsman, B., Haas, J., Persson, M., Ludvigsson, J., Svensson, A. M., Lind, M., Andersson Franko, M., & Nyström, T. (2021). LDL cholesterol level as a risk factor for retinopathy and nephropathy in children and adults with type 1 diabetes mellitus: A nationwide cohort study. Journal of internal medicine, 289(6), 873–886. https://doi.org/10.1111/joim.13212.

Rodríguez-Gutiérrez, R., & Montori, V. M. (2016). Glycemic Control for Patients With Type 2 Diabetes Mellitus: Our Evolving Faith in the Face of Evidence. Circulation. Cardiovascular quality and outcomes, 9(5), 504–512. https://doi.org/10.1161/CIRCOUTCOMES.116.002901.

S, D., & R, K. (2024). A Review of the Regulatory Challenges of Personalized Medicine. Cureus, 16(8), e67891. https://doi.org/10.7759/cureus.67891.

Safi, H., Safi, S., Hafezi-Moghadam, A., & Ahmadieh, H. (2018). Early detection of diabetic retinopathy. Survey of ophthalmology, 63(5), 601–608. https://doi.org/10.1016/j.survophthal.2018.04.003.

Safi, S. Z., Qvist, R., Kumar, S., Batumalaie, K., & Ismail, I. S. (2014). Molecular mechanisms of diabetic retinopathy, general preventive strategies, and novel therapeutic targets. BioMed research international, 2014, 801269. https://doi.org/10.1155/2014/801269.

Sajovic, J., Cilenšek, I., Mankoč, S., Tajnšek, Š., Kunej, T., Petrovič, D., et al. (2019). Vascular endothelial growth factor (VEGF)-related polymorphisms rs10738760 and rs6921438 are not risk factors for proliferative diabetic retinopathy (PDR) in patients with type 2 diabetes mellitus (T2DM). Bosn. J. Basic Med. Sci, 19(1), 94–100. https://doi.org/10.17305/bjbms.2018.3519.

Salz, D. A., & Witkin, A. J. (2015). Imaging in diabetic retinopathy. Middle East African journal of ophthalmology, 22(2), 145–150. https://doi.org/10.4103/0974-9233.151887.

Sasongko, M. B., Widyaputri, F., Agni, A. N., Wardhana, F. S., Kotha, S., Gupta, P., Widayanti, T. W., Haryanto, S., Widyaningrum, R., Wong, T. Y., Kawasaki, R., & Wang, J. J. (2017). Prevalence of Diabetic Retinopathy and Blindness in Indonesian Adults With Type 2 Diabetes. American journal of ophthalmology, 181, 79–87. https://doi.org/10.1016/j.ajo.2017.06.019.

Schreur V, van Asten F, Ng H, Weeda J, Groenewoud JMM, Tack CJ, Hoyng CB, de Jong EK, Klaver CCW, & Jeroen Klevering B. (2018). Risk factors for development and progression of diabetic retinopathy in Dutch patients with type 1 diabetes mellitus. Acta Ophthalmol, 96(5), 459-464. https://doi.org/10.1111/aos.13815.

Sebastian, P. A. W., Kusumadjadja, M. A., Juliari, I. G. A. M., & Suryaningrum, I. G. A. R. (2023). Karakteristik Pasien Diabetic Retinopathy. Intisari Sains Mediaa, 14(1): 59-63. https://doi.org/10.15562/ism.v14i1.1576.

Senapati, A., Tripathy, H. K., Sharma, V., & Gandomi, A. H. (2024). Artificial Intelligence of Diabetic Retinopathy Detection: A Systemic Review. Informatics in Medicine Unlocked, 45(2024): 101445. https://doi.org/10.1016/j.imu.2024.101445.

Shukla UV, & Tripathy K. (2023). Diabetic Retinopathy. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK560805/.

Sienkiewicz-Szłapka, E., Fiedorowicz, E., Król-Grzymała, A., Kordulewska, N., Rozmus, D., Cieślińska, A., & Grzybowski, A. (2023). The Role of Genetic Polymorphisms in Diabetic Retinopathy: Narrative Review. International Journal of Molecular Sciences, 24(21), 15865. https://doi.org/10.3390/ijms242115865.

Stefanicka-Wojtas, D., & Kurpas, D. (2023). Personalised Medicine-Implementation to the Healthcare System in Europe (Focus Group Discussions). Journal of personalized medicine, 13(3), 380. https://doi.org/10.3390/jpm13030380.

Straatsma B. R. (2018). Precision medicine and clinical ophthalmology. Indian journal of ophthalmology, 66(10), 1389–1390. https://doi.org/10.4103/ijo.IJO_1459_18.

Su, J., Yang, L., Sun, Z., & Zhan, X. (2024). Personalized Drug Therapy: Innovative Concept Guided With Proteoformics. Molecular & cellular proteomics : MCP, 23(3), 100737. https://doi.org/10.1016/j.mcpro.2024.100737.

Su, Z., Wu, Z., Liang, X., Xie, M., Xie, J., Li, H., Wang, X., & Jiang, F. (2023). Diabetic retinopathy risk in patients with unhealthy lifestyle: A Mendelian randomization study. Frontiers in endocrinology, 13, 1087965. https://doi.org/10.3389/fendo.2022.1087965.

Tomita Y, Lee D, Tsubota K, Negishi K, & Kurihara T. (2021). Updates on the Current Treatments for Diabetic Retinopathy and Possibility of Future Oral Therapy. Journal of Clinical Medicine, 10(20), 4666. https://doi.org/10.3390/jcm10204666.

Vaughan N. (2024). Review of smartphone funduscopy for diabetic retinopathy screening. Survey of ophthalmology, 69(2), 279–286. https://doi.org/10.1016/j.survophthal.2023.10.006.

Wahidin, M., Achadi, A., Besral, B., Kosen, S., Nadjib, M., Nurwahyuni, A., Ronoatmodjo, S., Rahajeng, E., Pane, M., & Kusuma, D. (2024). Projection of diabetes morbidity and mortality till 2045 in Indonesia based on risk factors and NCD prevention and control programs. Scientific reports, 14(1), 5424. https://doi.org/10.1038/s41598-024-54563-2.

Wang, J. H., Roberts, G. E., & Liu, G. S. (2020). Updates on Gene Therapy for Diabetic Retinopathy. Current diabetes reports, 20(7), 22. https://doi.org/10.1007/s11892-020-01308-w.

Wang, Z., Zhang, N., Lin, P., Xing, Y., & Yang, N. (2024). Recent advances in the treatment and delivery system of diabetic retinopathy. Frontiers in endocrinology, 15, 1347864. https://doi.org/10.3389/fendo.2024.1347864.

Wijesingha, N., Tsai, W.-S., Keskin, A. M., Holmes, C., Kazantzis, D., Chandak, S., Kubravi, H., & Sivaprasad, S. (2024). Optical Coherence Tomography Angiography as a Diagnostic Tool for Diabetic Retinopathy. Diagnostics, 14(3), 326. https://doi.org/10.3390/diagnostics14030326.

Wirkkala, J., Bloigu, R., & Hautala, N.M. (2019). Intravitreal bevacizumab improves the clearance of vitreous haemorrhage and visual outcomes in patients with proliferative diabetic retinopathy. BMJ Open Ophthalmology. 4:e000390. https://doi.org/10.1136/bmjophth-2019-000390.

Wright, W. S., Eshaq, R. S., Lee, M., Kaur, G., & Harris, N. R. (2020). Retinal Physiology and Circulation: Effect of Diabetes. Comprehensive Physiology, 10(3), 933–974. https://doi.org/10.1002/cphy.c190021.

Wykoff C.C., Nittala M.G., Zhou B., Fan W., Velaga S.B., Lampen S.I.R., Rusakevich A.M., Ehlers J.P., Babiuch A., & Brown D.M. (2019). Intravitreal Aflibercept for Retinal Nonperfusion in Proliferative Diabetic Retinopathy: Outcomes from the Randomized RECOVERY Trial. Ophthalmol. Retin. 3, 1076–1086. https://doi.org/10.1016/j.oret.2019.07.011.

Yin, L., Zhang, D., Ren, Q., Su, X., & Sun, Z. (2020). Prevalence and risk factors of diabetic retinopathy in diabetic patients: A community based cross-sectional study. Medicine, 99(9), e19236. https://doi.org/10.1097/MD.0000000000019236.

Zhang, M., Wu, J., Wang, Y., Wu, J., Hu, W., Jia, H., & Sun, X. (2023). Associations between blood pressure levels and diabetic retinopathy in patients with diabetes mellitus: A population-based study. Heliyon, 9(6), 16830. https://doi.org/10.1016/j.heliyon.2023.e16830.

Zhu, W. M D., Wu, Y. M. D., Meng, Y. F. M . D., Xing, Q. M. D., Tao, J. J. M D., & Lu, J. M. D. (2018). Association of obesity and risk of diabetic retinopathy in diabetes patients: A meta-analysis of prospective cohort studies. Medicine, 97(32), e11807. https://doi.org/10.1097/MD.0000000000011807.

Downloads

Published

2025-07-31

How to Cite

Putri, N. S., & Barliana, M. I. (2025). Optimizing diabetic retinopathy therapy with precision medicine: Can we do that in Indonesia? . Public Health Risk Assesment Journal, 3(1), 35–51. https://doi.org/10.61511/phraj.v3i1.2025.1840

Issue

Section

Articles

Citation Check