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ABSTRACT

Background: Indonesia’s energy landscape currently pivots between two bifaceted issues: the stagnation of the
national energy transition and the inefficiencies of decentralized waste management. Despite East Java
producing 9.27 million tons of dry-milled rice in 2024, the resulting 1.85 Mt of rice husk remains an
underutilized bio-resource. This wasted potential coincides with a sluggish renewable energy trajectory, where
the 15.25% share by mid-2025 significantly trails the 23% national target. Methods: A data-driven framework
integrating feedstock characterization, experimental data, and literature benchmarks was applied to evaluate
catalytic fast pyrolysis and upgrading pathways for rice husk. Machine-learning-assisted correlation analysis
and multi-objective optimization Non-dominated Sorting Genetic Algorithm II (NSGA-II) were used to
benchmark key process variables, product yields, and fuel quality trade-offs. Findings: The technical foundation,
built on detailed feedstock characterization, reveals that the CFP process yields ~46.9 wt% bio-oil, which is
further refined to a 32.2 wt% biodiesel-equivalent yield. To enhance operational precision, various ML
algorithms were evaluated; the Extra Trees model coupled with NSGA-II demonstrated superior predictive
performance with an R2 of up to 0.96 and an RMSE <1 M]/kg for calorific value prediction, showing strong
accuracy for O/C ratio and COz2 fraction estimation. Techno-economic assessment confirms the framework's
viability for pilot-scale implementation, projecting a positive NPV of IDR 50.4 million, an IRR of 23.78%, and a
2.93-year payback period. While sensitivity analysis highlights exchange rate volatility as a key financial risk,
the model successfully positions farmers as active stakeholders in the value chain. Conclusion: The integrated
CFP-ML framework demonstrates technical and economic viability for decentralized rice husk valorization,
positioning farmers as active stakeholders in the renewable energy value chain and offering a scalable, bottom-
up solution to support Indonesia’s energy transition in agricultural regions. Novelty/Originality of this article:
By synthesizing mechanistic process design with data-driven decision support, this study provides a scalable,
bottom-up pathway for decentralized waste-to-energy systems in agricultural regions.

KEYWORDS: catalytic fast pyrolysis; hydrotreating; NSGA-II; rice husk; surrogate
modeling.

Cite This Article:

Makarim, H. Y., Anrizky, M. D., Attoriq, B., Koyongian, D. E., & Negoro, R. A. (2026). Data-driven optimization of rice husk waste
management through an integrated machine learning and community-based pyrolysis approach. Journal of Innovation
Materials, Energy, and Sustainable Engineering, 3(2), 125-149. https://doi.org/10.61511 /jimese.v3i2.2026.2617

Copyright: © 2026 by the authors. This article is distributed under the terms and conditions of the Creative @
Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

JIMESE. 2026, VOLUME 3, ISSUE 2 https://doi.org/10.61511 /jimese.v3i2.2026.2617


https://journal-iasssf.com/index.php/JIMESE/index
https://journal-iasssf.com/index.php/JIMESE/index
https://issn.perpusnas.go.id/terbit/detail/20230807331859440
https://doi.org/10.61511/jimese.v3i2.2026.2617
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.61511/jimese.v3i2.2026.2617
https://journal-iasssf.com
mailto:11224028@mahasiswa.itb.ac.id

Makarim et al. (2026) 126

1. Introduction

Agricultural waste in Indonesia continues to accumulate without a comprehensive
management strategy, despite its substantial potential as a renewable energy resource. This
challenge is reflected in food loss and waste (FLW), which accounted for 40.9% of total
national waste in 2023 (SIPSN, 2023). The accumulation of FLW has resulted in material
losses estimated at 23-48 million tons annually, corresponding to economic losses of
approximately 213-551 trillion rupiah (Pusparisa, 2023). Rice, as the national staple
commodity, represents the largest contributor, accounting for 44% of total national FLW
between 2000 and 2019, equivalent to approximately 12-21 million tons of unhusked rice
waste per year (Ahdiat, 2023). As a central rice-producing region, East Java recorded 9.27
million tons of dry-milled grain (GKG) production in 2024 (BPS, 2024). Assuming a 20%
rice husk fraction, the province alone generates an estimated 1.85 million tons of rice husk
waste annually.

Beyond the issue of agricultural waste accumulation, Indonesia also faces structural
challenges in its energy transition. According to the Biofuel Producers Association/Asosiasi
Produsen Biofuel Indonesia (APROBI) Seminar held on 17 July 2025, the share of renewable
energy reached only 15.25% by mid-2025, with an average annual growth rate of 0.475%
since 2015, as reported by the Directorate General of New Renewable Energy and Energy
Conservation/Energi Baru Terbarukan dan Konservasi Energi (EBTKE) of the Ministry of
Energy and Mineral Resources/Menteri Energi dan Sumber Daya Mineral (ESDM). This
trajectory remains significantly below the 23% national target stipulated in Presidential
Regulation No. 22 of 2017. Furthermore, only approximately 2% of Indonesia’s total
renewable energy potential has been utilized to date. The coexistence of excessive
agricultural waste and underutilized renewable energy resources highlights a critical
opportunity to develop integrated waste-to-energy systems that address both challenges
simultaneously.

While thermochemical conversion technologies such as pyrolysis have been widely
studied for organic waste valorization, most existing studies emphasize either process
optimization at the reactor scale or economic feasibility at the industrial scale, with limited
integration of data-driven optimization and community-level deployment within a single
framework. In particular, the application of machine learning in pyrolysis systems has
primarily focused on specific feedstocks or slurry-based processes, and its role as a general
benchmarking and decision-support tool for similar kinds of organic waste pyrolysis
systems remains underexplored.

In response to these gaps, this study develops a data-driven rice husk waste
management system that integrates thermochemical conversion, machine-learning-based
surrogate modeling, and community-scale deployment. The proposed approach employs
machine learning as a benchmarking and predictive tool to support decision-making in
process operation and post-pyrolysis byproduct handling across organic waste pyrolysis
systems, rather than as a feedstock-specific optimization strategy. By embedding technical
optimization within a community-based deployment framework, this study aims to
demonstrate alow-waste, scalable energy system that aligns with national energy transition
goals. Furthermore, the feasibility of community deployment is assessed through simplified
techno-economic and socio-economic indicators, providing a preliminary evaluation of
practical implementation potential at the grassroots level. Together, this introduces an
integrated bottom-up framework that couples surrogate modeling with community-
oriented design. Unlike prior studies that either optimize specific reactors using black-box
models or evaluate waste-to-energy systems without data-driven coupling, this study
explicitly bridges surrogate modeling, mechanistic process design, and community-scale
deployment within a single decision-support framework.
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2. Methods

The methodological framework integrates primary and secondary data to support a
data-driven decision process for rice husk pyrolysis and downstream upgrading. Primary
data include feedstock characterization, pyrolysis performance indicators, and
experimental datasets used to develop machine-learning-based surrogate models, while
secondary data are obtained from literature benchmarks on organic waste and sludge
pyrolysis. The overall workflow is structured into three main stages: feedstock
characterization and process selection, catalytic fast pyrolysis with catalyst screening, and
downstream upgrading via hydrotreating.

In the first stage, proximate and ultimate analyses are performed to quantify volatile
matter, ash content, moisture, fixed carbon, and elemental composition (C, H, O, N, S). These
properties serve as the initial decision basis for selecting the thermochemical conversion
route. Rather than treating the processing pathway as a fixed design choice, this study
formulates process selection as a data-driven decision problem. Correlation analysis and
machine-learning-assisted benchmarking are employed to evaluate how feedstock
properties influence product distributions, thereby informing the selection of catalytic fast
pyrolysis over alternative routes such as torrefaction or conventional pyrolysis. This stage
corresponds to the decision nodes that determine whether the system should be oriented
toward bio-oil production and whether catalyst-assisted operation is required.

The core methodological focus, namely the selection of catalytic fast pyrolysis and the
subsequent hydrotreating upgrading step. Machine-learning-assisted correlation analysis
is used to identify the most influential variables governing bio-oil yield, biochar formation,
and product quality. Specifically, heatmap-based correlation analysis and literature
benchmarking are employed to quantify the roles of volatile matter, ash content, elemental
composition, and temperature in controlling phase distribution and fuel properties. These
correlations are then used as a decision-support layer to guide catalyst input selection,
operating condition benchmarking, and the prioritization of hydrotreating as an upgrading
pathway when high oxygen content and low H/C ratios are predicted.

Finally, the upgraded bio-oil stream is routed to hydrotreating when data-driven
indicators suggest that direct fuel utilization would be limited by high oxygen content or
instability. In this manner, machine learning is not applied as a direct “black-box optimizer”
corresponding to a single predefined procedure, but rather acts as a benchmarking and
decision-support layer that links feedstock properties, interpretable operating condition
benchmarking, and product quality across the entire process chain. This integrated
framework enables systematic evaluation of catalytic fast pyrolysis and hydrotreating as
adaptive process choices for organic waste pyrolysis systems, rather than as predetermined
unit operations, particularly in the context of further community deployment.

. Spearman input-output Machine learning’s algorithm-
Start Pre-processing dataset L. i R .. o
multicolinearity analysis based output prediction for bio-
oil, bio-char, & syngas
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Fig. 1. Integrated ml slurry processing workflow

Best algorithm
identification as a
surrogate model

Following the process-level decision framework described before, Figure 1 illustrates
the computational workflow that supports the data-driven selection of catalytic fast
pyrolysis and downstream upgrading pathways. This workflow provides the analytical
layer used to evaluate feedstock suitability, benchmark operating conditions, and guide the
decision nodes through machine-learning-assisted modeling and multi-objective analysis.

Subsequently, a multi-objective evolutionary algorithm (NSGA-II) is employed to
explore the trade-offs among competing objectives, including liquid yield, solid yield, gas
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formation, and fuel quality indicators. Candidate solutions are screened using literature-
based feasibility thresholds to ensure physical consistency and process realism. The
resulting Pareto front is then used as a decision-support tool to identify representative
operating regions and benchmark optimal trade-offs, rather than to prescribe a single
deterministic operating point.

In this framework, machine learning and multi-objective optimization serve as a
benchmarking and recommendation layer. This layer supports process selection, catalyst
utilization, and upgrading prioritization, aligning directly with the decision nodes shown in
Figure 1. While the surrogate models are trained on sludge-derived slurry datasets, they are
utilized here as a generic benchmarking tool to identify dominant feedstock-process-
product relationships, rather than to predict specific rice husk CFP performance. This
strategy allows for a systematic evaluation of catalytic fast pyrolysis and hydrotreating
across heterogeneous organic wastes, ensuring both interpretability and adaptability for
community-scale deployment.

3. Results and Discussion

3.1 Preliminary analysis of rice husk biomass and process design

As the initial analysis stage begins with proximate and ultimate analyses, an
appropriate thermochemical conversion pathway is determined, with bio-oil fraction
selected as the primary target of production. The obtained feedstock characteristics,
particularly volatile matter content, ash fraction, moisture level, and oxygen composition,
indicate that pyrolysis is a suitable process for oxygen removal through thermal
decomposition (Tsai et al., 2007). Compared to other thermochemical techniques, fast
pyrolysis remains the most suitable option, as it avoids excessive tar formation typical of
slow pyrolysis and does not primarily produce non-condensable gases with limited
technical readiness for scale-up, such as flash pyrolysis (Balat et al.,, 2009). Accordingly,
catalytic fast pyrolysis (CFP) was selected as the primary conversion route to maximize
liquid product formation while enabling in-situ upgrading of pyrolysis vapors.

The selection of catalytic fast pyrolysis further requires careful consideration of
catalyst type shown in Table 1, as different catalyst classes exhibit fundamentally different
mechanistic roles in controlling product distribution and bio-oil quality. Basic metal oxides
such as CaO, Fe;03; Ca(OH);, and K;COs; primarily promote acid neutralization,
decarboxylation, and decarbonylation reactions, leading to reduced char formation and
increased yields of light oxygenated compounds. However, these catalysts generally
increase water formation and retain a high fraction of oxygenated species, indicating that
their primary function is oxygen removal rather than hydrocarbon upgrading. Boric oxide
and alkali additives further enhance dehydration and deoxygenation, but at the expense of
increased char and aqueous phase formation, thereby limiting improvements in liquid fuel
quality.

In contrast, metal-modified mesoporous catalysts such as Al/MCM-41, Cu-MCM-41, Fe-
MCM-41, and Zn-MCM-41 promote cracking reactions and partial deoxygenation, increasing
hydrogen formation and reducing methoxy and carbonyl compounds. Nevertheless, due to
their weak shape selectivity and broader pore size distribution, these catalysts exhibit
limited control over aromatic formation and the final hydrocarbon spectrum. Acidic
zeolites, particularly HZSM-5 and Pt/HZSM-5, exhibit a fundamentally different upgrading
behavior. Owing to their strong Brgnsted acidity and shape-selective microporous
structure, HZSM-5 promotes extensive cracking, aromatization, and deoxygenation,
resulting in increased yields of gasoline-range aromatics, reduced oxygen-to-carbon ratios,
and substantial suppression of methoxy and heavy oxygenated compounds. The near-
complete decomposition of aliphatic C-C bonds and elimination of more than 80% of
methoxy groups reported for HZSM-5 further indicate its superior capability in controlling
bio-oil chemical composition rather than merely enhancing deoxygenation.
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Table 1. Comparative analysis of difference catalyst function for CFP
Catalyst Type Impact Comparisons Reference
Cao, Fe203 The presence of CaO was found to suppress the Luetal. (2010)
formation of heavy compounds such as phenols
and anhydrosugars, while promoting the
generation of cyclopentanones, hydrocarbons, and
light products including acetaldehyde, 2-butanone,
and methanol. In addition, CaO effectively reduced
acid species. In contrast, Fez03 favored the
formation of polycyclic aromatic hydrocarbons
(PAHs)
B203 (boric oxide), The process enhanced deoxygenation by removing Lim & Andresen
mixed with biomass approximately 50-80% of hydroxyl and methoxy  (2011)
functional groups, led to higher water and char
production, and resulted in a reduction in gas

yields.
Al/MCM-41, Cu- Lignocel predominantly generates hydrocarbon-  Antonakou et al.
Al/MCM-41, Fe- rich products, whereas phenolic compounds. The  (2006)
Al/MCM-41, Zn- application of catalysts generally increased phenol
Al/MCM-41 formation, with lower Si/Al ratios enhancing

overall yields and improving product quality.
Catalysts containing Fe and Cu resulted in the
highest phenol production. In addition, Al/MCM-
41 effectively reduced oxygenated compounds,
while Cu/MCM-41 led to the most significant
increase in Hz concentration within the gas

fraction.
K2COs3 or Ca(OH)z, K2CO3 exhibited higher catalytic activity by Wang et al. (2010)
mixed with biomass completely suppressing the formation of

saccharides, aldehydes, and alcohols, while
markedly decreasing the production of acids,
furans, and guaiacols. This catalyst also enhanced
the yields of alkanes and phenolic compounds. In
contrast, Ca(OH)2 lowered char formation,
increased liquid yields, and promoted alcohol
production, showing behavior opposite to that

observed with K2COs.

Pt/HZSM-5 and HZSM- The use of HZSM-5 enhanced isomerization and  Katikaneni et al.

5 hydrogenation reactions, leading to higher gas (1997), Ben &
production and an increased C4 iso-to-n- Ragauskas (2011)

hydrocarbon ratio, while simultaneously reducing
the yield of organic liquid products (OLP). The
presence of steam further contributed to the
decrease in OLP yield. Additionally, HZSM-5 was
highly effective in breaking aliphatic C-0 bonds
and carbonyl functionalities, removing nearly 80%
of methoxy groups.

(Dickerson & Soria, 2013)

Based on this comparative mechanistic assessment, HZSM-5 was selected as the
primary catalytic material in this study because it provides simultaneous control over
oxygen removal, aromatic hydrocarbon formation, and heavy oxygenate suppression. This
mechanistic catalyst selection is later coupled with the machine-learning benchmarking
layer to ensure consistency between empirical catalyst behavior and data-driven operating
condition recommendations, vital for achieving a stable, energy-dense bio-oil result suitable
for downstream hydrotreating and fuel upgrading.

Following the selection of HZSM-5 based on the comparative mechanistic assessment
described above, the catalytic fast pyrolysis configuration adopted in this study is illustrated
in Figure 2. As shown, the CFP system operates under an inert nitrogen atmosphere, where

JIMESE. 2026, VOLUME 3, ISSUE 2 https://doi.org/10.61511 /jimese.v3i2.2026.2617


https://doi.org/10.61511/jimese.v3i2.2026.2617

Makarim et al. (2026) 130

rice husk biomass is introduced through a feeding hopper and rapidly heated in the thermal
zone (Furnace 1). In this zone, fast pyrolysis occurs, producing char, volatile vapors, and
non-condensable gases under short vapor residence times. The resulting pyrolysis vapors
subsequently pass through a downstream catalytic zone (Furnace 2) containing an external
HZSM-5 catalyst. Owing to its hierarchical pore structure and strong acidity, HZSM-5
promotes cracking, partial deoxygenation, and aromatization of oxygenated pyrolysis
intermediates, enabling preliminary upgrading of bio-oil vapors within the reactor.

Thermocouples

1 > Char
s .
Furnace 1 Micro-GC
Thermalzone A
Sl —| - External
Furnace 2 Catalyst
Catalytic zone
‘\Drum type
i i N ~ gas meter
Bio-oil [ S g M g N vy v
condensation [ Water-ice bath (0°()]

system

Fig. 2. Schematic of a catalytic fast pyrolysis system
(Pagano etal,, 2025)

Solid char is separated prior to the catalytic section, while upgraded vapors are
directed to a condensation system maintained at approximately 0°C using a water-ice bath
to recover crude bio-oil. Non-condensable gases are quantified using a drum-type gas meter
and subsequently analyzed by micro-scale gas chromatography (micro-GC). This
configuration allows fast thermal decomposition and catalytic vapor upgrading to occur
sequentially, forming a suitable precursor stream for subsequent bio-oil purification
through hydrotreating. Other catalytic processes are available, such as conventional and
flash pyrolysis.

Table 2. Proximate and Ultimate analysis of rice husk

Parameter Value
Proximate

Volatile Matter (%) 68.20
Ash Content (%) 16.10
Moisture Content (%) 12.67
Fixed Carbon (%) 15.70
Heating Value (K]J/Kg) 15,175
Ultimate

Carbon Content(%) 45.2
Hydrogen Content (%) 5.8
Oxygen Content (%) 47.6
Nitrogen Content (%) 1.02
Sulphur Content (%) 0.21

(Efomah & Gbabo, 2015)
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The purification of crude bio-oil obtained from catalytic fast pyrolysis is proposed to
proceed through several possible upgrading pathways, among which hydrotreating is
identified as a primary development option due to its effectiveness in improving chemical
stability and reducing oxygen content. Hydrotreating is a hydrogen-based upgrading
process that primarily proceeds via hydrodeoxygenation reactions, converting oxygenated
functional groups into water, carbon monoxide, and carbon dioxide, thereby increasing the
H/C ratio and calorific value of the upgraded oil (Lachos-Perez et al., 2023).

Bio-oil H,

Stabilizer To hydrogen plant

Stabilized bio-oil
Hydrocracker

High H :
Resid
temperature [}—@ : e

hydrotreating

Non-condensable

———)———Gasoline

U ded oil
PEECEESE ————— Diesel Small

&, Purge

Resid

Fig. 3. Hydrotreating process diagram
(Wangetal,, 2021)

As illustrated in Figure 3, hydrotreating-based upgrading can be configured as a multi-
stage process. In the initial stabilization stage, bio-oil is subjected to moderate-temperature
hydrotreating to hydrogenate reactive carbonyl and carboxyl compounds, producing a
stabilized bio-oil that is less prone to polymerization and coke formation. This step is
followed by a higher-temperature hydrotreating or hydrocracking stage, where deeper
hydrodeoxygenation and cracking reactions occur, resulting in substantial oxygen removal
and the formation of lighter hydrocarbon fractions (Wang et al., 2021).

Conceptually, this upgrading pathway can be divided into two temperature regimes.
The first stage, operated at 100-300 °C, focuses on stabilization through hydrogenation of
highly reactive oxygenated species. The second stage operates at 350-400°C under
hydrogen pressure, aiming to achieve extensive hydrodeoxygenation and hydrocarbon
enrichment. These reactions are typically facilitated by catalysts composed of noble metals,
metal sulfides, or transition metals supported on acidic materials compatible with HZSM-5,
enabling synergistic hydrogenation and cracking functionalities (Sanna et al., 2015).
Hydrotreating systems are commonly designed to operate at pressures ranging from 1 to
30 MPa and temperatures between 200 and 500 °C in batch, downflow, or semi-continuous
reactors, depending on scale and process objectives (Cheng et al,, 2018).

Depending on operating severity and downstream separation, the upgraded products
may be directed toward different utilization routes, including gasoline-range and diesel-
range fuels, while non-condensable streams and excess hydrogen can be recycled or
integrated with hydrogen production facilities. This flexibility positions hydrotreating as a
strategic upgrading option within an integrated bio-oil valorization framework, providing a
strong basis for the subsequent process flow diagram (PFD) design and system-level
evaluation.

To integrate the entire technical workflow, a process flow diagram (PFD) is presented
in Figure 4. The proposed configuration is designed as an integrated system for converting
rice husk biomass into bio-oil and an upgraded liquid fuel through two main stages,
Catalytic Fast Pyrolysis (CFP) and Hydrodeoxygenation (HDO) treatment, as proposed. In
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the initial stage, raw biomass is dried in a rotary biomass dryer (E-DRY) to reduce moisture
content to below 8%, followed by size reduction using a grinder (E-GRD) to achieve particle
sizes smaller than 2 mm. The dried material is then conveyed under an inert nitrogen
atmosphere through a feed-lock hopper (T-FEED) to maintain oxygen-free conditions prior
to entering the two-zone CFP reactor (R-CFP).

E-COND SDEC
Multistage Condenser 58 aquecus 34 kg Deganter/ Oil-Water
(ice bath siage 0-5°C) Separator

« [FeedLack/ N2 Purge|

RCFP
Catalytic Fast Pyrolysis

stk Zonet: 400°C, Zone2: 430-500°C
T-FEED S3vapour~ 489 1g
Feed Bin [E-
04y 59 il foed 1o HDO 435 kg
96 vapour — congenser (quench] RHDO
Hydrotreating Reactor

T250-400°C; P:100-200 bar
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Raw bio-oi tank Upgraded oil storage | ©
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: 512 water ~40 N
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Fig. 4. Process flow diagram (PFD) of entire technical process (a) PFD with node-by-node process
specifications; (b) PFD with schematic illustrations of the leading technical equipment

Inside the reactor, operated at temperatures of 400-500 °C under an N, atmosphere,
thermocatalytic decomposition occurs in the presence of an HZSM-5 catalyst, converting
lignocellulosic components into a mixture of organic vapors, non-condensable gases, and
solid char. Solid particles are separated using a cyclone separator (S-CYC). At the same time,
the vapor fraction is sequentially condensed in a multistage condenser (E-COND) equipped
with two cooling zones (quench and ice bath). The resulting condensate is subsequently
routed to an oil-water decanter (S-DEC) for phase separation, yielding raw bio-oil that is
transferred to a storage tank (T-OIL), whereas the aqueous phase is directed to the
wastewater treatment system (E-FLT-WWTP).
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The second stage involves upgrading via hydrotreating (R-HDO) to improve bio-oil
quality into a biodiesel-range fuel. Prior to upgrading, the bio-oil feed is preheated in a shell-
and-tube heat exchanger (E-PRE) to approximately 150 °C and mixed with high-pressure
hydrogen supplied by a hydrogen compressor skid (C-Hz), which also facilitates hydrogen
recycle from the high-pressure separator (S-HPSEP). In the HDO reactor, operated at 250-
400 °C and 100-200 bar, hydrodeoxygenation reactions remove oxygen-containing
functional groups from bio-o0il compounds, producing an upgraded oil along with water and
light gaseous by-products. These three phases are separated in a three-phase high-pressure
separator (S-HPSEP), where the liquid upgraded fuel is sent to the upgraded oil storage tank
(T-UPG), the aqueous phase is routed to filtration (E-FLT), and hydrogen-rich gas is
recompressed and recycled through C-H; to enhance hydrogen utilization efficiency.
Residual non-condensable gases and process emissions are treated in a gas scrubber (E-
SCR) prior to final disposal through a flare system (FLARE).

Table 3. Utilities specification for each process unit

Code Process Unit  Primary Process Parameters Input / Output
E-DRY Biomass Dryer Reduce rice husk 120-180°C; 1 In: S1 (wet rice husk) 1t
moisture content prior  atm; 1 batch Out: dried rice husk 0.95
to grinding. t
E-GRD Grinder / Grind rice husk to a Ambient; 1atm  In: 950 kg
Hammer Mill particle size < 2 mm. Out: 950 kg powder
T-FEED Feed Hopper Provide bufferingand  Ambient; N, In: 950 kg
automatic feeding to the inert; <1vol% O, Out: 950 kg
reactor.
Feed Lock Lock Hopper Maintain an inert <2 bar; N, In: 950 kg
(N2 purge) atmosphere during blanket Out: 950 kg
feeding.
R-CFP Catalytic Fast Convert biomass into Zone 1: 400 °C;  In: 950 kg
Pyrolysis bio-oil, gas, and char via Zone 2: 480-500 Out: S3 vapor 469 kg; S4
Reactor HZSM-5 catalysis. °C; 1 atm char 300 kg; S5 gas 231
kg
S-CYC Cyclone Separate solid char from 450-480 °C; 1 In: S3 vapor 469 kg
Separator gas/vapor. atm Out: S4 char 300 kg; S6
vapor 469 kg
E-COND Multistage Condense bio-oil vapor Stage 1: 40 °C; In: S6 vapor 469 kg
Condenser into a liquid phase. Stage 2: 0-5°C; 1 Out: S7 liquid (435 kg
(Quench + Ice atm aqueous) + 34 kg
Bath)
S-DEC Oil-Water Separate the bio-oiland 25-40°C; 1atm In:S7 469 kg
Decanter aqueous phases from Out: S9 oil 435 kg; S8
the condensate. (aq) 34 kg
T-OIL Raw Bio-oil Store crude bio-oil prior Ambient-60 °C; 1 In: S9 oil 435 kg
Tank to upgrading. atm Out: feed to R-HDO
E-PRE Preheater Increase the bio-oil 120-150°C; 10- In: S9 oil 435 kg
(Shell & Tube temperature prior to 15 bar Out: S10 (oil + H2) » 455
HE) hydrotreating. kg
C-H, Hydrogen Compressed recycle and Outlet 100-200 In: S13 H; gas 38.8 kg
Compressor  make-up Hz gas. bar; 25 °C Out: Hz make-up +
Skid recycle = 60 kg
R-HDO Hydrotreating Convert bio-oil into 250-400 °C; 100- In: S10 oil + Hz = 455 kg
Reactor biodiesel via 200 bar Out: S11 oil » 378 kg; S12
hydrogenation. water = 40 kg; S13 gas =
38.8kg
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S-HPSEP  3-Phase HP Separate the HDO 50-80°C; 100- In: R-HDO effluent
Separator effluent into oil, water, 200 bar Out: S11 oil = 378 kg; S12
and gas phases. water = 40 kg; S13 gas =
38.8kg
T-UPG Upgraded Oil  Store the final biodiesel Ambient; 1atm  In:S11 378 kg
Storage product. Out: S14 product to
storage
E-SCR Gas Scrubber  Clean syngas (CO, COz,  30-50°C;1atm In: S5 gas 231 kg + minor
/ Flare System CH4) and route it to the vent
flare/genset. Out: clean gas to
flare/genset
E-FLT Slurry Filter / Filter char and Ambient; 1atm  In: S4 300 kg + S8/S512 =
WWTP Inlet  wastewater from the 74 kg
slurry stream. Out: slurry solid = 300

kg; WW = 74 kg
HOT-OIL  Thermal Oil  Provide heating duty for 180-250 °C; 3 bar Thermal loop fluid

Heater E-DRY and E-PRE.

ICE-BATH Cooling / Provide cooling for E- 0-5°C Cooling brine circuit

/ CHILLER Refrigeration COND Stage 2.
Unit

N,-GEN Nitrogen Supply inert gas tothe 5 Nm3/h; 99.9% N, to T-FEED, R-CFP
Generator system. N,

FLARE Flare Stack Incinerate off-gas (Hz2/ 700-1000°C; 1  Off-gas from E-SCR and

Co /VvoQ). atm C-Hz
WWTP Wastewater  Treatliquid effluent Ambient Effluent 74 kg

Treatment from E-FLT and S-DEC.

3.2 Characterization and multicollinearity analysis of rice husk pyrolysis

Based on the heatmap analysis of bio-oil synthesis, the most influential variable
affecting bio-oil yield is volatile matter (r = 0.43), followed by hydrogen content (r = 0.25)
and nitrogen content (r = 0.24). This indicates that feedstocks with high volatile and
hydrogen content tend to produce greater quantities of bio-oil. Conversely, ash content
shows a strong negative correlation with bio-oil yield (r = -0.43), suggesting that high ash
concentrations hinder the conversion of feedstock into liquid products. These findings are
consistent with those reported by Jerzak et al. (2024), who observed that moderate
temperatures and volatile-rich feedstocks such as sewage sludge and microalgae can
maximize bio-oil yields to over 35%. However, elevated pyrolysis temperatures result in a
significant decrease in bio-oil yield due to secondary decomposition reactions.

Accordingly, sewage slurry is adopted in this study as a reference domain to delineate
an optimal pyrolysis severity window, because its volatile-rich character and well-
documented temperature sensitivity provide a robust empirical basis for identifying
conditions that favor liquid formation before secondary cracking dominates. This slurry-
informed operating envelope is then transferred to rice husk-derived streams as an
informed starting point, while explicitly accounting for the stronger ash-related inhibition
expected in high-mineral feedstocks to avoid systematic overestimation of bio-oil yield.

The correlation heatmap further reveals that, in addition to volatile matter, hydrogen
(r = 0.25), nitrogen (r = 0.24), and carbon content (r = 0.22) are positively correlated with
bio-oil yield. This supports the notion that volatile organic compounds, such as lipids,
proteins, and carbohydrates in rice husk, serve as primary precursors for bio-oil via thermal
cracking and volatilization. Jerzak et al. (2024) also emphasized that highly volatile fractions
facilitate the release of light molecular species. In contrast, hydrogen stabilizes free radicals
during thermal decomposition, thereby promoting the formation of stable aromatic
compounds and liquid hydrocarbons.
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Fig. 5. Multicollinearity heatmap on rice husk pyrolysis (a) for bio-oil synthesis; (b) for biochar
synthesis; (c) for syngas synthesis

In the context of biochar production, the heatmap reveals a positive correlation
between biochar yield and ash content (r = 0.38), suggesting that inorganic constituents and
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thermally stable carbon structures are more resistant to degradation and therefore
accumulate in the solid phase during pyrolysis. In contrast, the negative correlation with
temperature (r =-0.39) indicates that, as temperature increases, the thermal decomposition
of rice husk waste into bio-oil and syngas becomes more pronounced. The energetic
characteristics of biochar are further reflected by a strong positive correlation with calorific
value (r = 0.64) and a strong negative correlation with ash content (r = -0.87). Additionally,
the atomic H/C (r = -0.60) and O/C (r = -0.39) ratios exhibit negative correlations with
rising temperature, confirming that carbonization and deoxygenation processes intensify
under higher thermal conditions (Vershinina et al., 2022).

3.3 Multi-objective optimization for slurry pyrolysis benchmark

In multi-objective optimization of rice husk pyrolysis, machine learning (ML) serves as
a surrogate modeling approach to replace complex, computationally expensive physical
simulations. The pyrolysis of sewage sludge entails nonlinear interactions among various
process parameters (including temperature, residence time, and intrinsic feedstock
properties) that are challenging to model using conventional mechanistic methods. ML
enables rapid prediction of key outputs, such as bio-oil yield, biochar characteristics, and
syngas composition, solely from historical datasets.

Table 4. Machine learning performance analysis as a surrogate model

Target Best Model R2 Score RMSE MSE MAPE
Calorific value

(MJ/kg) ExtraTrees 0.961892 0.58985 0.347923 0.054316
0/C ratio (-) ExtraTrees 0.852925 0.151034 0.022811 0.48897

Bio-char Yield (%) ExtraTrees 0.845811 6.894357 47.53216 0.22996
Syngas CO2z (mol%) ExtraTrees 0.81222 8.363523 69.94851 0.23576

Bio-oil Yield (%) ExtraTrees 0.760497 6.015574 36.18713 0.20994
Syngas Hz (mol%) ExtraTrees 0.704197 6.930259 48.02849 1.54E+15
H/C ratio (-) LGB 0.644423 0.185279 0.034328 0.33422
Syngas Yield (%) LGB 0.637678 6.77032 45.83723 0.25237
Syngas CO (mol%) ExtraTrees 0.60967 4.36807 19.08003 8.46E+14
H/N ratio (-) ExtraTrees 0.584614 1.684675 2.83813 0.1868

Syngas CH4 (mol%) ExtraTrees 0.572841 4.366069 19.06256 1.38E+15

Model evaluation revealed that the Extra Trees Regressor achieved the highest
predictive performance, with a coefficient of determination (R2) up to 0.96 and a root mean
square error (RMSE) of less than 1 M]/kg for calorific value estimation. This model also
exhibited superior accuracy in predicting the oxygen-to-carbon (0/C) ratio and syngas CO>
content, owing to its robustness against noisy data and its ability to capture complex feature
interdependencies. Light Gradient Boosting Machine (LightGBM) proved effective for
predicting the hydrogen-to-carbon (H/C) ratio and overall syngas yield, although its
performance was slightly inferior. Nonetheless, some outputs (particularly CH, and CO
concentrations in the syngas) remained prone to substantial predictive errors, indicating
the need for improved data preprocessing or exploration of alternative modeling
architectures.
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Fig. 6. Pareto front on multi-objective optimization for (a) bio-oil vs bio-char; (b) syngas Hz vs COz;
(c) calorific value vs bio-char yield; (d) H/C vs 0/C

The Figure 6 above, illustrate key trade-offs among major product streams resulting

from sewage sludge-derived slurry pyrolysis. Two-dimensional plots capture the trade-offs
among bio-oil yield and bio-char yield, hydrogen and carbon monoxide fractions in syngas,
and calorific value versus bio-char yield, with color gradients encoding auxiliary parameters
such as H/C ratio or bio-oil yield. The van Krevelen diagram visualizes atomic-level energy
quality indicators (H/C vs. 0/Cratios) and serves as a diagnostic tool for assessing feedstock
energy potential. Furthermore, the three-dimensional plot delineates the distribution and
balance among bio-oil, bio-char, and syngas yields in relation to total product output,
thereby reflecting the overall energy conversion efficiency of the process.

3D Pareto: Oil vs Char vs Gas (Sorted by Total Yield)
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Fig. 7. 3D Pareto interpretation for multi-objective optimization yields
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Appendix 1 presents the optimal combinations of input parameters (including sludge
composition, proximate analysis data, and operational conditions) that yield the best
outcomes for each specific optimization target: highest bio-oil yield, maximum bio-char
production, highest calorific value, and lowest oxygen-to-carbon (0/C) ratio. In addition to
reporting the corresponding input and output values, Appendix 1 emphasizes the inherent
trade-offs among product characteristics. It highlights the interrelationships among mass
balances across the bio-oil, syngas, and biochar fractions.

3.4 Optimization of technical parameter on process design

According to Table 5, the catalytic fast pyrolysis (CFP) process for rice husk conversion
to syngas and bio-oil requires high temperatures, low heating rates, and short vapor
residence times (Balat et al., 2009). Elevated temperatures facilitate the rapid pyrolysis of
cellulose, hemicellulose, and lignin, with hemicellulose decomposing between 470-530 K,
cellulose between 510-620 K, and lignin between 550-770 K (Demirbas & Arin, 2002). For
optimal rice husk CFP, the recommended temperature range is 850-1250 K, with a heating
rate of 10-200 K/s, utilizing finely ground biomass and an oxygen-free environment (Balat
et al,, 2009). The bio-oil production process should involve rapid heating and quenching to
yield intermediate liquid products. Vapor residence time should be maintained below 2
seconds, with aerosols and pyrolysis vapors cooled to form bio-oil, while extended gas
residence time favors increased syngas production. For improved results, rice husk particles
should have a residence time of 0.5-10 seconds and a particle size not exceeding 1 mm
(Balat et al., 2009).

Table 5. Optimal parameters for catalytic fast pyrolysis of biomass

Pyrolisis Main Optimal Heatingrate  Particle size Solid residence
Technology products temperature (K) (K/s) (mm) time (s)
Fast Bio-oiland 850-1250 10-200 <1 0.5-10

syngas

(Balat et al., 2009)

Solid yields are lowest during the CFP process. As shown in Table 5, bio-char
production yield decreases significantly to below 50% when the temperature exceeds 683
K. Therefore, optimal temperatures for bio-char formation are below 575 K, with particle
sizes ranging from 5 to 500 mm and longer residence times to promote char formation.
Higher temperatures are unfavorable because they increase tar production during CFP
(Balat et al., 2009). Consequently, slow pyrolysis is recommended for maximizing biochar
yield (Elliot et al., 1991).

Table 6. Various results of solid biowaste pyrolysis in relation to temperature

Temperature (K) Char yield (%) Liquids yield (%) Gas yield (%)
507 97.0 0.0 3.0

584 76.2 15.9 7.9

655 62.9 25.4 11.7

683 49.0 35.0 16.0

(Ktigiik & Demirbas, 1997)

3.5 Value chain and techno-economic analysis

The proposed system is embedded within a value chain framework that emphasizes a
zero-waste and integrated agricultural energy system. In this framework, farmers are
positioned as key upstream actors responsible for supplying rice husk residues, thereby
directly linking agricultural waste management with renewable energy production. Rather
than being treated as passive waste generators, farmers participate as incentivized
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suppliers within a community-based value chain, enabling mutual benefits for both the
farming community and the designed system.

Through structured collection and distribution of rice husk residues, farmers
contribute to reducing localized waste accumulation while simultaneously converting an
otherwise discarded by-product into an additional income stream. This arrangement
provides economic incentives through waste-based compensation schemes, transforming
agricultural residues into monetizable resources. From the system perspective, the
availability of locally sourced feedstock reduces procurement costs and logistical
complexity, supporting operational continuity at the community scale. This reciprocal
relationship forms the foundation of grassroots energy communities, where value creation
and waste mitigation occur simultaneously within a localized supply network.

From a technical standpoint, the value chain is underpinned by the conversion
performance of rice husk through the HZSM-5-assisted catalytic fast pyrolysis process.
Based on literature benchmarks, the CFP process yields approximately 46.90% (w/w) bio-
oil from rice husk feedstock (Cai et al., 2018). Accordingly, the processing of one metric ton
of rice husk is expected to generate approximately 469 kg of crude pyrolysis bio-oil. This
intermediate product subsequently undergoes upgrading via hydrotreating, where oxygen
content is reduced to approximately 20% to enhance fuel stability and combustion
efficiency. Literature-reported upgrading efficiencies indicate a biodiesel-equivalent
conversion rate of 32.20% (w/w) relative to the bio-oil feed (Wang et al., 2021; Fermoso et
al,, 2017), corresponding to 151.02 kg of upgraded fuel product.

Table 7. Financial projection of proposed system

Item (mil.) /year 2025 2026 2027 2028 2029 2030
Cash Inflow 713.8 749.5 787.0 826.3 867.7 911.0
Cash Outflow 763.2 761.0 728.7 702.9 682.2 665.7
Taxable Income 58.27 123.4 185.4 245.3
Earnings After Tax -49.36 -11.48 12.81 27.15 40.79 53.97

and Depreciation

The system is proposed for pilot-scale implementation, and the financial projection is
developed to evaluate its economic feasibility during the initial deployment phase. Table 9
summarizes the techno-economic assessment for the 2025-2030 period. In the first year of
operation (2025), the project recorded a negative taxable income of IDR 49,367,206.48,
reflecting capital recovery and operational ramp-up typical of early-stage deployment.
During this period, cash inflow amounts to IDR 713,860,967.63, while cash outflow is IDR
763,228,174.10. Despite this initial deficit, the investment remains financially viable, as
indicated by a positive Net Present Value (NPV) of IDR 50,428,772.68 and an Internal Rate
of Return (IRR) of 23.78%.

Table 8. Key techno-economic indicators based on projected financial performance

Techno-Economic Key Parameters Value

Net Present Value (IDR) 50,428,772.68
Return on Investment (%) 12.82

Internal Rate of Return (%) 23.78
Payback Period (year) 2.93

Operational stabilization in subsequent years leads to a marked improvement in
financial performance. By 2026, losses will decrease, and earnings before interest, taxes,
depreciation, and amortization (EBITDA) will show positive growth, reflecting improved
process utilization and enhanced value capture across the supply chain. By 2030, annual
cash inflow is projected to reach IDR 911,087,591.11, with a Return on Investment (ROI) of
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12.82%. The estimated Payback Period (PBP) of 2.93 years indicates that the initial
investment can be recovered in less than three years, underscoring the economic robustness
and scalability potential of the proposed system.

3.6 Sensitivity analysis

Sensitivity analyses were conducted in this study to evaluate the robustness of the
financial performance of the catalytic fast pyrolysis and hydrotreating-based rice husk
waste management system to various technical and economic uncertainties. In economic
modeling, sensitivity analysis serves as a formal robustness test that examines how
variations in model outputs can be quantitatively attributed to variations in fundamental
input parameters (Hermeling & Mennel, 2008). Specifically, it translates uncertainty in
basic economic parameters into uncertainty in key output indicators, thereby providing a
prerequisite for drawing reliable economic conclusions from numerical simulations
(Hermeling & Mennel, 2008).

Table 9. Sensitivity analysis results when there is a 10% increase in the value of the dollar

Item (mil.) 2025 2026 2027 2028 2029 2030

/year

Cash Inflow IDR 785.2 IDR824.5 IDR865.7 IDR909.0 IDR954.4 IDR1.002.1
Cash Outflow IDR 831.0 IDR830.0 IDR7959 1IDR768.6 IDR746.8 IDR729.4
Taxable Income IDR69.7 IDR140.3 IDR207.6 IDR272.7
Earnings After -IDR45.83  -IDR5.52 IDR15.35 IDR30.87 IDR45.67 IDR60.01
Tax and

Depreciation

Although the baseline financial projections show positive economic viability, key
economic parameters (with a first-order focus on exchange rate fluctuations as a
representative macroeconomic uncertainty) are dynamic and have the potential to change
at the real implementation stage, especially in the context of community-scale systems. In
this study, the exchange rate is selected as a first-order macroeconomic proxy due to its
direct influence on both imported hydrogen and catalyst costs in the proposed system.
Accordingly, the present sensitivity analysis aims to identify the financial and technical
parameters that have the most influence on the key economic viability indicators, namely
Net Present Value (NPV), Internal Rate of Return (IRR), and Payback Period (PBP), under a
deterministic one-factor sensitivity framework.

Table 10. Baseline techno-economic analysis results

Techno-Economic Key Parameters Value

Net Present Value (IDR) 73,158,972.51
Return on Investment (%) 13.59

Internal Rate of Return (%) 33.61
Payback Period (year) 2.92

Although the present analysis focuses on exchange rate variation as a dominant
macroeconomic uncertainty, other parameters such as bio-oil upgrading yield, product
selling price, and operating cost are also expected to influence system feasibility. These
parameters are therefore recommended as future sensitivity dimensions to be explored as
more operational data become available from pilot-scale deployment. Based on the results
presented in Table 10, a 10% increase in the dollar exchange rate leads to an increase in
NPV by 31.06%, ROI by 6%, and IRR by 41.33%, accompanied by a reduction in PBP by 0.01
years (approximately 3.65 days). These results indicate that exchange rate fluctuations
exert a strong influence on financial performance indicators. However, under practical
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deployment conditions, currency depreciation may simultaneously increase both revenue
and imported cost components, suggesting that net profitability will depend on the balance
between export-linked product pricing and imported input expenditures.

Table 11. Sensitivity analysis results when there is a 5% increase in demand

Item (mil.) /year 2025 2026 2027 2028 2029 2030

Cash Inflow IDR 824.5 IDR865.7 IDR909.0 I[DR954.4 IDR1.002 IDR1,002.1
Cash Outflow IDR862.4 IDR863.0 IDR8289 IDR801.6 IDR779.8 IDR729.4
Taxable Income IDR 80.0 IDR 140.3 IDR222.6 [IDR272.7
Earnings After -IDR45.83 IDR2.722 1DR17.62 IDR33.61 IDR4891 IDR63.78
Tax and

Depreciation

Furthermore, parameter changes will be made when there is a 5% increase in product
demand. If there is an increase in product demand, the NPV value will increase by 94.34%,
ROI by 13.02%, and IRR by 108%. From a community deployment perspective, the
sensitivity analysis highlights the importance of financial robustness under market and
macroeconomic uncertainty. Since farmer income, feedstock supply continuity, and local
participation are directly linked to system profitability, maintaining positive NPV and short
payback periods under parameter variations is essential to sustain long-term community
engagement. This underscores the need for adaptive pricing mechanisms, flexible incentive
schemes, and modular scaling strategies to mitigate financial risks at the grassroots
implementation level.

Table 12. Techno-economic key parameters under a 5% demand increase scenario

Techno-Economic Key Parameters Value

Net Present Value (Rp) 98,007,694.13
Return on Investment (%) 14.49

Internal Rate of Return (%) 49.49
Payback Period (year) 2.91

3.7 Proposed methods for community deployment

Beyond techno-economic feasibility, the proposed value chain is designed to be
deployable within a community-based framework that positions local actors as active
participants rather than passive resource providers. In Indonesia, the relevance of end-to-
end and community-integrated waste management systems is increasingly reflected in
ongoing industrial practices. One such example is the circular economy initiative
implemented by CAP in collaboration with local community groups, including KSM Sehati,
through the Integrated Waste Processing Facility/Instalasi Pengolahan Sampah Terpadu
(IPST) Asari in Cilegon. This initiative demonstrates an operational model in which
community-based waste collection, industrial processing, and product valorization are
integrated within a single deployment framework.

Fig. 8. Field visit to integrated waste processing facility
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A tangible outcome of this system is the development of PLUSRI, a derived oil product
obtained from processed plastic waste, which is currently being evaluated for internal
company use as a substitute fuel for corporate vehicle fleets (Figure 9). The existence of
PLUSRI indicates that community-industry integrated waste-to-fuel pathways are not
merely conceptual, but can be translated into standardized fuel products with defined
specifications and targeted end-use applications. This precedent is particularly relevant to
the present study, as it provides empirical evidence that pilot-scale waste valorization
systems can be embedded within industrial value chains while maintaining strong linkages
to community-level feedstock supply.

Fig. 9. PLUSR], a derived oil product for company use
(Bakti Barito Foundation, n.d.)

The experience from IPST Asari illustrates that community involvement can be
effectively operationalized within industrial waste management frameworks, not merely as
a social add-on but as a functional component of system continuity and resource recovery.
This approach is consistent with findings from community-based economic studies, which
emphasize that sustainable local development emerges when communities are engaged as
subjects of economic activity, supported by capacity building, shared ownership, and
collaborative governance structures (Wahib & Susanto, 2024). Within this framework, rice
husk suppliers in the proposed system are integrated not simply as feedstock providers, but
as stakeholders embedded within a localized energy value chain, contributing to both
material supply and system resilience.

This deployment philosophy aligns with bottom-up approaches to economic and supply
chain design, which emphasize decentralized decision-making and the utilization of locally
generated operational data over centralized, top-down planning. Shapiro (1998) argues that
bottom-up analytical systems are particularly effective in environments characterized by
uncertainty, heterogeneity, and dynamic constraints, as decisions are informed by
transactional and operational data rather than aggregated strategic assumptions. In
contrast, top-down economic models rely heavily on centralized forecasts and averaged
parameters, which may inadequately represent local variability in community-scale
systems.

For community-based bioenergy systems, such bottom-up characteristics are
especially relevant, as feedstock availability, quality, and logistics reliability vary spatially
and temporally across agricultural communities. By structuring the value chain around
decentralized feedstock aggregation and pilot-scale processing hubs, the proposed system
enhances adaptability to local conditions while reducing dependence on large-scale
coordination mechanisms. The integration of machine learning surrogate models further
reinforces this bottom-up analytical framework. Rather than functioning as centralized
optimization tools detached from operational realities, surrogate models are trained on
process-level data to capture nonlinear relationships among feedstock properties, operating
conditions, and product yields. This data-driven approach enables localized optimization
and adaptive decision support, consistent with bottom-up analytical information systems
that translate operational data into actionable insights (Shapiro, 1998).
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The deployment strategy also draws on principles of community system design, which
emphasize that technological systems must be embedded in existing social and operational
practices to achieve long-term adoption and sustainability. Agostini et al. (2002)
demonstrated that community systems are most effective when they augment daily routines
and local interactions rather than functioning as externally imposed infrastructures.
Accordingly, the proposed system aligns rice husk collection, logistics scheduling, and
incentive mechanisms with established agricultural workflows to minimize participation
barriers and sustain engagement.

From a supply chain perspective, the system is conceptualized as an integrated, multi-
stage chain incorporating reverse logistics for agricultural residues. As articulated in supply
chain design theory, effective resource recovery systems require coordination among
upstream suppliers, processing nodes, and downstream markets to optimize overall system
performance rather than the performance of isolated components (Beamon, 1998). Within
this framework, community-based feedstock aggregation functions as the upstream node,
while the pilot-scale pyrolysis unit serves as the central processing hub, converting low-
value residues into energy-dense intermediates and final fuel products.

By integrating bottom-up participation, localized logistics, modular processing, and
data-driven optimization, the proposed deployment model supports both technical
efficiency and social sustainability. Compared to top-down, centralized energy
infrastructures, this approach enhances system resilience by reducing exposure to supply
disruptions, enabling incremental scaling through replication across agricultural clusters,
and continuously adapting operational strategies using locally generated data. The resulting
framework provides a theoretically grounded and practically viable pathway for
implementing pilot-scale pyrolysis systems within agricultural communities while
remaining aligned with broader techno-economic and supply chain optimization objectives.

Beyond its immediate application, this framework also offers a transferable blueprint
for decentralized bioenergy deployment across agricultural regions with comparable
residue availability and community structures, highlighting the need for future policy
frameworks that support modular replication, standardized community contracts, and data-
enabled governance to enable scalable and regionally adaptive waste-to-energy systems.

4. Conclusions

This study represents a strategic advancement in the development of renewable
bioenergy systems by integrating technological innovation, artificial intelligence, and
agricultural community engagement within a unified sustainable energy framework. By
combining HZSM-5-based catalytic fast pyrolysis (CFP) with a two-stage hydrotreating
process, rice husk biomass is effectively converted into bio-oil and biochar, achieving
optimized conversion efficiency. While literature-recommended CFP temperatures span
850-1250 K, the present design adopts a moderate dual-zone configuration (400-500°C) as
a pilot-scale compromise between liquid yield, catalyst stability, and community-scale
operability. Under these conditions, thermocatalytic reactions conducted at residence times
of 2-3 s, followed by hydrogenation employing Ni-Mo/Al;03 catalysts, achieve up to 90%
deoxygenation, yielding liquid bio-oil fractions of up to 46.9 wt%.

Machine-learning-based optimization using Extra Trees and LightGBM models enables
accurate prediction of product yields, calorific values, and elemental ratios (e.g., C/H),
achieving coefficients of determination (R*)> 0.95, thereby allowing precise control over
product quality and enabling adaptive operation under biomass feedstock variability. From
a techno-economic perspective, the system demonstrates strong financial feasibility, with
an internal rate of return (IRR) of 23.78%, a return on investment (ROI) of 12.82%, a
payback period of 2.93 years, and a net present value (NPV) of approximately Rp50.4
million, based on a modular process design with a capacity of 1 ton feedstock per batch.

By integrating digitalized supply chain management and volume-based compensation
mechanisms, the proposed framework enhances energy efficiency and accelerates
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decarbonization within the agricultural sector, while simultaneously establishing an
inclusive business model that positions farmers as integral stakeholders in a low-carbon,
intelligent, and globally competitive national energy ecosystem.
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Appendix 1. Recommended input-output parameters for pyrolysis
Input

Solutions Ultimate analysis Proximate analysis Operating conditions

Carbon Hydrogen Nitrogen Oxygen Sulfur Volatile Fixed Ash Temperature Heatingrate Reaction

content content content content  content matter carbon (wt%) (°Q) (°C/min) time (min)

(Wt%) (wt%) (wt%) (wt%) (wt%) (wt%) (wt%)
Top Bio-oil 50.468 5.751 7.349 33.628 0.810 62.967 0.944 12.058 1030.55 58.121 101.750
Yield
Top Bio-char 37.277 4.055 9.562 3.815 1.216 47.997 14.755 35.800 227.400 9.738 23.672
Yield
Balanced Yield 50.567 6.232 7.368 32.266 1.985 64.708 7.393 13.204 562.612 9.600 101.750
(»100%)
Top Calorific 35.239 4.694 1.257 36.691 0.344 71.720 1.414 16.425 307.477 9.201 59.278
Value
Minimum O/C  36.862 5.212 8.585 15.926 0.996 60.797 7.947 28.505 765.870 10.729 75.608
Ratio

Output
Solutions Bio-oil Syngas Bio-char
L , Syngas Syngas . Calorific
B.IO_OII Syngas Yield - Syngas H, CH4 CO2 Syngas CO B}O_Char value H/Cratio (-) H/Nratio(-) O/Cratio (-)
Yield (%) (%) (mol%) (mol%) Yield (%)
(mol%)  (mol%) (M]/kg)

Top Bio-oil
Yield 49.519 29.419 28.240 13.726 28.631 18.362 25.432 11.072 0.378 4.921 0.497
ST{;’e‘l’dBlo'Char 13.042 4586 3.071 4680 83476  6.001 78918 10336  1.136 10.785 1131
?ji%%i;‘; vield p121 21515 28.399 14629 32557 15215 36362 11567  0.071 3.917 0.845
\T/qu(e:alonﬁc 31.237  7.825 7.402 8946 51065 10015 56254 16416  0.718 10.622 0.401
Minimum O/C

40.566 25.290 46.719 10.601 21.585 20.585 34.885 11.426 0.528 6.229 0.291

Ratio
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