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ABSTRACT  
Background: Indonesia’s energy landscape currently pivots between two bifaceted issues: the stagnation of the 
national energy transition and the inefficiencies of decentralized waste management. Despite East Java 
producing 9.27 million tons of dry-milled rice in 2024, the resulting 1.85 Mt of rice husk remains an 
underutilized bio-resource. This wasted potential coincides with a sluggish renewable energy trajectory, where 
the 15.25% share by mid-2025 significantly trails the 23% national target. Methods: A data-driven framework 
integrating feedstock characterization, experimental data, and literature benchmarks was applied to evaluate 
catalytic fast pyrolysis and upgrading pathways for rice husk. Machine-learning-assisted correlation analysis 
and multi-objective optimization Non-dominated Sorting Genetic Algorithm II (NSGA-II) were used to 
benchmark key process variables, product yields, and fuel quality trade-offs. Findings: The technical foundation, 
built on detailed feedstock characterization, reveals that the CFP process yields ~46.9 wt% bio-oil, which is 
further refined to a 32.2 wt% biodiesel-equivalent yield. To enhance operational precision, various ML 
algorithms were evaluated; the Extra Trees model coupled with NSGA-II demonstrated superior predictive 
performance with an R2 of up to 0.96 and an RMSE <1 MJ/kg for calorific value prediction, showing strong 
accuracy for O/C ratio and CO2 fraction estimation. Techno-economic assessment confirms the framework's 
viability for pilot-scale implementation, projecting a positive NPV of IDR 50.4 million, an IRR of 23.78%, and a 
2.93-year payback period. While sensitivity analysis highlights exchange rate volatility as a key financial risk, 
the model successfully positions farmers as active stakeholders in the value chain. Conclusion: The integrated 
CFP–ML framework demonstrates technical and economic viability for decentralized rice husk valorization, 
positioning farmers as active stakeholders in the renewable energy value chain and offering a scalable, bottom-
up solution to support Indonesia’s energy transition in agricultural regions. Novelty/Originality of this article: 
By synthesizing mechanistic process design with data-driven decision support, this study provides a scalable, 
bottom-up pathway for decentralized waste-to-energy systems in agricultural regions. 
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1. Introduction  
 
Agricultural waste in Indonesia continues to accumulate without a comprehensive 

management strategy, despite its substantial potential as a renewable energy resource. This 
challenge is reflected in food loss and waste (FLW), which accounted for 40.9% of total 
national waste in 2023 (SIPSN, 2023). The accumulation of FLW has resulted in material 
losses estimated at 23-48 million tons annually, corresponding to economic losses of 
approximately 213-551 trillion rupiah (Pusparisa, 2023). Rice, as the national staple 
commodity, represents the largest contributor, accounting for 44% of total national FLW 
between 2000 and 2019, equivalent to approximately 12-21 million tons of unhusked rice 
waste per year (Ahdiat, 2023). As a central rice-producing region, East Java recorded 9.27 
million tons of dry-milled grain (GKG) production in 2024 (BPS, 2024). Assuming a 20% 
rice husk fraction, the province alone generates an estimated 1.85 million tons of rice husk 
waste annually. 

Beyond the issue of agricultural waste accumulation, Indonesia also faces structural 
challenges in its energy transition. According to the Biofuel Producers Association/Asosiasi 
Produsen Biofuel Indonesia (APROBI) Seminar held on 17 July 2025, the share of renewable 
energy reached only 15.25% by mid-2025, with an average annual growth rate of 0.475% 
since 2015, as reported by the Directorate General of New Renewable Energy and Energy 
Conservation/Energi Baru Terbarukan dan Konservasi Energi (EBTKE) of the Ministry of 
Energy and Mineral Resources/Menteri Energi dan Sumber Daya Mineral (ESDM). This 
trajectory remains significantly below the 23% national target stipulated in Presidential 
Regulation No. 22 of 2017. Furthermore, only approximately 2% of Indonesia’s total 
renewable energy potential has been utilized to date. The coexistence of excessive 
agricultural waste and underutilized renewable energy resources highlights a critical 
opportunity to develop integrated waste-to-energy systems that address both challenges 
simultaneously. 

While thermochemical conversion technologies such as pyrolysis have been widely 
studied for organic waste valorization, most existing studies emphasize either process 
optimization at the reactor scale or economic feasibility at the industrial scale, with limited 
integration of data-driven optimization and community-level deployment within a single 
framework. In particular, the application of machine learning in pyrolysis systems has 
primarily focused on specific feedstocks or slurry-based processes, and its role as a general 
benchmarking and decision-support tool for similar kinds of organic waste pyrolysis 
systems remains underexplored. 

In response to these gaps, this study develops a data-driven rice husk waste 
management system that integrates thermochemical conversion, machine-learning-based 
surrogate modeling, and community-scale deployment. The proposed approach employs 
machine learning as a benchmarking and predictive tool to support decision-making in 
process operation and post-pyrolysis byproduct handling across organic waste pyrolysis 
systems, rather than as a feedstock-specific optimization strategy. By embedding technical 
optimization within a community-based deployment framework, this study aims to 
demonstrate a low-waste, scalable energy system that aligns with national energy transition 
goals. Furthermore, the feasibility of community deployment is assessed through simplified 
techno-economic and socio-economic indicators, providing a preliminary evaluation of 
practical implementation potential at the grassroots level. Together, this introduces an 
integrated bottom-up framework that couples surrogate modeling with community-
oriented design. Unlike prior studies that either optimize specific reactors using black-box 
models or evaluate waste-to-energy systems without data-driven coupling, this study 
explicitly bridges surrogate modeling, mechanistic process design, and community-scale 
deployment within a single decision-support framework. 

 
 
 
 

https://doi.org/10.61511/jimese.v3i2.2026.2617


Makarim et al. (2026)    127 
 

 
JIMESE. 2026, VOLUME 3, ISSUE 2                                                                               https://doi.org/10.61511/jimese.v3i2.2026.2617 

2. Methods 
 
The methodological framework integrates primary and secondary data to support a 

data-driven decision process for rice husk pyrolysis and downstream upgrading. Primary 
data include feedstock characterization, pyrolysis performance indicators, and 
experimental datasets used to develop machine-learning-based surrogate models, while 
secondary data are obtained from literature benchmarks on organic waste and sludge 
pyrolysis. The overall workflow is structured into three main stages: feedstock 
characterization and process selection, catalytic fast pyrolysis with catalyst screening, and 
downstream upgrading via hydrotreating. 

In the first stage, proximate and ultimate analyses are performed to quantify volatile 
matter, ash content, moisture, fixed carbon, and elemental composition (C, H, O, N, S). These 
properties serve as the initial decision basis for selecting the thermochemical conversion 
route. Rather than treating the processing pathway as a fixed design choice, this study 
formulates process selection as a data-driven decision problem. Correlation analysis and 
machine-learning-assisted benchmarking are employed to evaluate how feedstock 
properties influence product distributions, thereby informing the selection of catalytic fast 
pyrolysis over alternative routes such as torrefaction or conventional pyrolysis. This stage 
corresponds to the decision nodes that determine whether the system should be oriented 
toward bio-oil production and whether catalyst-assisted operation is required. 

The core methodological focus, namely the selection of catalytic fast pyrolysis and the 
subsequent hydrotreating upgrading step. Machine-learning-assisted correlation analysis 
is used to identify the most influential variables governing bio-oil yield, biochar formation, 
and product quality. Specifically, heatmap-based correlation analysis and literature 
benchmarking are employed to quantify the roles of volatile matter, ash content, elemental 
composition, and temperature in controlling phase distribution and fuel properties. These 
correlations are then used as a decision-support layer to guide catalyst input selection, 
operating condition benchmarking, and the prioritization of hydrotreating as an upgrading 
pathway when high oxygen content and low H/C ratios are predicted. 

Finally, the upgraded bio-oil stream is routed to hydrotreating when data-driven 
indicators suggest that direct fuel utilization would be limited by high oxygen content or 
instability. In this manner, machine learning is not applied as a direct “black-box optimizer” 
corresponding to a single predefined procedure, but rather acts as a benchmarking and 
decision-support layer that links feedstock properties, interpretable operating condition 
benchmarking, and product quality across the entire process chain. This integrated 
framework enables systematic evaluation of catalytic fast pyrolysis and hydrotreating as 
adaptive process choices for organic waste pyrolysis systems, rather than as predetermined 
unit operations, particularly in the context of further community deployment. 

 

 

Fig. 1. Integrated ml slurry processing workflow 

Following the process-level decision framework described before, Figure 1 illustrates 
the computational workflow that supports the data-driven selection of catalytic fast 
pyrolysis and downstream upgrading pathways. This workflow provides the analytical 
layer used to evaluate feedstock suitability, benchmark operating conditions, and guide the 
decision nodes through machine-learning-assisted modeling and multi-objective analysis. 

Subsequently, a multi-objective evolutionary algorithm (NSGA-II) is employed to 
explore the trade-offs among competing objectives, including liquid yield, solid yield, gas 
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formation, and fuel quality indicators. Candidate solutions are screened using literature-
based feasibility thresholds to ensure physical consistency and process realism. The 
resulting Pareto front is then used as a decision-support tool to identify representative 
operating regions and benchmark optimal trade-offs, rather than to prescribe a single 
deterministic operating point. 

In this framework, machine learning and multi-objective optimization serve as a 
benchmarking and recommendation layer. This layer supports process selection, catalyst 
utilization, and upgrading prioritization, aligning directly with the decision nodes shown in 
Figure 1. While the surrogate models are trained on sludge-derived slurry datasets, they are 
utilized here as a generic benchmarking tool to identify dominant feedstock–process–
product relationships, rather than to predict specific rice husk CFP performance. This 
strategy allows for a systematic evaluation of catalytic fast pyrolysis and hydrotreating 
across heterogeneous organic wastes, ensuring both interpretability and adaptability for 
community-scale deployment. 
 

3. Results and Discussion 
 
3.1 Preliminary analysis of rice husk biomass and process design 

As the initial analysis stage begins with proximate and ultimate analyses, an 
appropriate thermochemical conversion pathway is determined, with bio-oil fraction 
selected as the primary target of production. The obtained feedstock characteristics, 
particularly volatile matter content, ash fraction, moisture level, and oxygen composition, 
indicate that pyrolysis is a suitable process for oxygen removal through thermal 
decomposition (Tsai et al., 2007). Compared to other thermochemical techniques, fast 
pyrolysis remains the most suitable option, as it avoids excessive tar formation typical of 
slow pyrolysis and does not primarily produce non-condensable gases with limited 
technical readiness for scale-up, such as flash pyrolysis (Balat et al., 2009). Accordingly, 
catalytic fast pyrolysis (CFP) was selected as the primary conversion route to maximize 
liquid product formation while enabling in-situ upgrading of pyrolysis vapors. 

The selection of catalytic fast pyrolysis further requires careful consideration of 
catalyst type shown in Table 1, as different catalyst classes exhibit fundamentally different 
mechanistic roles in controlling product distribution and bio-oil quality. Basic metal oxides 
such as CaO, Fe2O3, Ca(OH)2, and K2CO3 primarily promote acid neutralization, 
decarboxylation, and decarbonylation reactions, leading to reduced char formation and 
increased yields of light oxygenated compounds. However, these catalysts generally 
increase water formation and retain a high fraction of oxygenated species, indicating that 
their primary function is oxygen removal rather than hydrocarbon upgrading. Boric oxide 
and alkali additives further enhance dehydration and deoxygenation, but at the expense of 
increased char and aqueous phase formation, thereby limiting improvements in liquid fuel 
quality. 

In contrast, metal-modified mesoporous catalysts such as Al/MCM-41, Cu-MCM-41, Fe-
MCM-41, and Zn-MCM-41 promote cracking reactions and partial deoxygenation, increasing 
hydrogen formation and reducing methoxy and carbonyl compounds. Nevertheless, due to 
their weak shape selectivity and broader pore size distribution, these catalysts exhibit 
limited control over aromatic formation and the final hydrocarbon spectrum. Acidic 
zeolites, particularly HZSM-5 and Pt/HZSM-5, exhibit a fundamentally different upgrading 
behavior. Owing to their strong Brønsted acidity and shape-selective microporous 
structure, HZSM-5 promotes extensive cracking, aromatization, and deoxygenation, 
resulting in increased yields of gasoline-range aromatics, reduced oxygen-to-carbon ratios, 
and substantial suppression of methoxy and heavy oxygenated compounds. The near-
complete decomposition of aliphatic C-C bonds and elimination of more than 80% of 
methoxy groups reported for HZSM-5 further indicate its superior capability in controlling 
bio-oil chemical composition rather than merely enhancing deoxygenation. 
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Table 1. Comparative analysis of difference catalyst function for CFP 
Catalyst Type Impact Comparisons Reference 
CaO, Fe2O3 The presence of CaO was found to suppress the 

formation of heavy compounds such as phenols 
and anhydrosugars, while promoting the 
generation of cyclopentanones, hydrocarbons, and 
light products including acetaldehyde, 2-butanone, 
and methanol. In addition, CaO effectively reduced 
acid species. In contrast, Fe2O3 favored the 
formation of polycyclic aromatic hydrocarbons 
(PAHs) 

Lu et al. (2010) 

B2O3 (boric oxide), 
mixed with biomass 

The process enhanced deoxygenation by removing 
approximately 50–80% of hydroxyl and methoxy 
functional groups, led to higher water and char 
production, and resulted in a reduction in gas 
yields. 

Lim & Andresen 
(2011) 

Al/MCM-41, Cu-
Al/MCM-41, Fe-
Al/MCM-41, Zn-
Al/MCM-41 

Lignocel predominantly generates hydrocarbon-
rich products, whereas phenolic compounds. The 
application of catalysts generally increased phenol 
formation, with lower Si/Al ratios enhancing 
overall yields and improving product quality. 
Catalysts containing Fe and Cu resulted in the 
highest phenol production. In addition, Al/MCM-
41 effectively reduced oxygenated compounds, 
while Cu/MCM-41 led to the most significant 
increase in H2 concentration within the gas 
fraction. 

Antonakou et al. 
(2006) 

K2CO3 or Ca(OH)2, 
mixed with biomass 

K2CO3 exhibited higher catalytic activity by 
completely suppressing the formation of 
saccharides, aldehydes, and alcohols, while 
markedly decreasing the production of acids, 
furans, and guaiacols. This catalyst also enhanced 
the yields of alkanes and phenolic compounds. In 
contrast, Ca(OH)2 lowered char formation, 
increased liquid yields, and promoted alcohol 
production, showing behavior opposite to that 
observed with K2CO3. 

Wang et al. (2010) 

Pt/HZSM-5 and HZSM-
5 

The use of HZSM-5 enhanced isomerization and 
hydrogenation reactions, leading to higher gas 
production and an increased C4 iso-to-n-
hydrocarbon ratio, while simultaneously reducing 
the yield of organic liquid products (OLP). The 
presence of steam further contributed to the 
decrease in OLP yield. Additionally, HZSM-5 was 
highly effective in breaking aliphatic C–O bonds 
and carbonyl functionalities, removing nearly 80% 
of methoxy groups. 

Katikaneni et al. 
(1997), Ben & 
Ragauskas (2011) 

 

(Dickerson & Soria, 2013) 

Based on this comparative mechanistic assessment, HZSM-5 was selected as the 
primary catalytic material in this study because it provides simultaneous control over 
oxygen removal, aromatic hydrocarbon formation, and heavy oxygenate suppression. This 
mechanistic catalyst selection is later coupled with the machine-learning benchmarking 
layer to ensure consistency between empirical catalyst behavior and data-driven operating 
condition recommendations, vital for achieving a stable, energy-dense bio-oil result suitable 
for downstream hydrotreating and fuel upgrading. 

Following the selection of HZSM-5 based on the comparative mechanistic assessment 
described above, the catalytic fast pyrolysis configuration adopted in this study is illustrated 
in Figure 2. As shown, the CFP system operates under an inert nitrogen atmosphere, where 
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rice husk biomass is introduced through a feeding hopper and rapidly heated in the thermal 
zone (Furnace 1). In this zone, fast pyrolysis occurs, producing char, volatile vapors, and 
non-condensable gases under short vapor residence times. The resulting pyrolysis vapors 
subsequently pass through a downstream catalytic zone (Furnace 2) containing an external 
HZSM-5 catalyst. Owing to its hierarchical pore structure and strong acidity, HZSM-5 
promotes cracking, partial deoxygenation, and aromatization of oxygenated pyrolysis 
intermediates, enabling preliminary upgrading of bio-oil vapors within the reactor. 

 

 

Fig. 2. Schematic of a catalytic fast pyrolysis system 
(Pagano et al., 2025) 

Solid char is separated prior to the catalytic section, while upgraded vapors are 
directed to a condensation system maintained at approximately 0°C using a water–ice bath 
to recover crude bio-oil. Non-condensable gases are quantified using a drum-type gas meter 
and subsequently analyzed by micro-scale gas chromatography (micro-GC). This 
configuration allows fast thermal decomposition and catalytic vapor upgrading to occur 
sequentially, forming a suitable precursor stream for subsequent bio-oil purification 
through hydrotreating. Other catalytic processes are available, such as conventional and 
flash pyrolysis. 

  
Table 2. Proximate and Ultimate analysis of rice husk 

Parameter  Value 
Proximate 
Volatile Matter (%)  68.20  
Ash Content (%)  16.10  
Moisture Content (%)  12.67  
Fixed Carbon (%)  15.70  
Heating Value (KJ/Kg)  15,175  
Ultimate 
Carbon Content(%)  45.2  
Hydrogen Content (%)  5.8  
Oxygen Content (%)  47.6  
Nitrogen Content (%)  1.02  
Sulphur Content (%)  0.21  

(Efomah & Gbabo, 2015) 
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The purification of crude bio-oil obtained from catalytic fast pyrolysis is proposed to 
proceed through several possible upgrading pathways, among which hydrotreating is 
identified as a primary development option due to its effectiveness in improving chemical 
stability and reducing oxygen content. Hydrotreating is a hydrogen-based upgrading 
process that primarily proceeds via hydrodeoxygenation reactions, converting oxygenated 
functional groups into water, carbon monoxide, and carbon dioxide, thereby increasing the 
H/C ratio and calorific value of the upgraded oil (Lachos-Perez et al., 2023). 

 

 
Fig. 3. Hydrotreating process diagram 

(Wang et al., 2021) 

As illustrated in Figure 3, hydrotreating-based upgrading can be configured as a multi-
stage process. In the initial stabilization stage, bio-oil is subjected to moderate-temperature 
hydrotreating to hydrogenate reactive carbonyl and carboxyl compounds, producing a 
stabilized bio-oil that is less prone to polymerization and coke formation. This step is 
followed by a higher-temperature hydrotreating or hydrocracking stage, where deeper 
hydrodeoxygenation and cracking reactions occur, resulting in substantial oxygen removal 
and the formation of lighter hydrocarbon fractions (Wang et al., 2021). 

Conceptually, this upgrading pathway can be divided into two temperature regimes. 
The first stage, operated at 100–300 oC, focuses on stabilization through hydrogenation of 
highly reactive oxygenated species. The second stage operates at 350–400oC under 
hydrogen pressure, aiming to achieve extensive hydrodeoxygenation and hydrocarbon 
enrichment. These reactions are typically facilitated by catalysts composed of noble metals, 
metal sulfides, or transition metals supported on acidic materials compatible with HZSM-5, 
enabling synergistic hydrogenation and cracking functionalities (Sanna et al., 2015). 
Hydrotreating systems are commonly designed to operate at pressures ranging from 1 to 
30 MPa and temperatures between 200 and 500 oC in batch, downflow, or semi-continuous 
reactors, depending on scale and process objectives (Cheng et al., 2018). 

Depending on operating severity and downstream separation, the upgraded products 
may be directed toward different utilization routes, including gasoline-range and diesel-
range fuels, while non-condensable streams and excess hydrogen can be recycled or 
integrated with hydrogen production facilities. This flexibility positions hydrotreating as a 
strategic upgrading option within an integrated bio-oil valorization framework, providing a 
strong basis for the subsequent process flow diagram (PFD) design and system-level 
evaluation. 

To integrate the entire technical workflow, a process flow diagram (PFD) is presented 
in Figure 4. The proposed configuration is designed as an integrated system for converting 
rice husk biomass into bio-oil and an upgraded liquid fuel through two main stages, 
Catalytic Fast Pyrolysis (CFP) and Hydrodeoxygenation (HDO) treatment, as proposed. In 

https://doi.org/10.61511/jimese.v3i2.2026.2617


Makarim et al. (2026)    132 
 

 
JIMESE. 2026, VOLUME 3, ISSUE 2                                                                               https://doi.org/10.61511/jimese.v3i2.2026.2617 

the initial stage, raw biomass is dried in a rotary biomass dryer (E-DRY) to reduce moisture 
content to below 8%, followed by size reduction using a grinder (E-GRD) to achieve particle 
sizes smaller than 2 mm. The dried material is then conveyed under an inert nitrogen 
atmosphere through a feed-lock hopper (T-FEED) to maintain oxygen-free conditions prior 
to entering the two-zone CFP reactor (R-CFP). 

 

 

 

Fig. 4. Process flow diagram (PFD) of entire technical process (a) PFD with node-by-node process 
specifications; (b) PFD with schematic illustrations of the leading technical equipment  

 
Inside the reactor, operated at temperatures of 400–500 oC under an N2 atmosphere, 

thermocatalytic decomposition occurs in the presence of an HZSM-5 catalyst, converting 
lignocellulosic components into a mixture of organic vapors, non-condensable gases, and 
solid char. Solid particles are separated using a cyclone separator (S-CYC). At the same time, 
the vapor fraction is sequentially condensed in a multistage condenser (E-COND) equipped 
with two cooling zones (quench and ice bath). The resulting condensate is subsequently 
routed to an oil–water decanter (S-DEC) for phase separation, yielding raw bio-oil that is 
transferred to a storage tank (T-OIL), whereas the aqueous phase is directed to the 
wastewater treatment system (E-FLT–WWTP). 

a 

b 
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The second stage involves upgrading via hydrotreating (R-HDO) to improve bio-oil 
quality into a biodiesel-range fuel. Prior to upgrading, the bio-oil feed is preheated in a shell-
and-tube heat exchanger (E-PRE) to approximately 150 oC and mixed with high-pressure 
hydrogen supplied by a hydrogen compressor skid (C-H2), which also facilitates hydrogen 
recycle from the high-pressure separator (S-HPSEP). In the HDO reactor, operated at 250-
400 oC and 100–200 bar, hydrodeoxygenation reactions remove oxygen-containing 
functional groups from bio-oil compounds, producing an upgraded oil along with water and 
light gaseous by-products. These three phases are separated in a three-phase high-pressure 
separator (S-HPSEP), where the liquid upgraded fuel is sent to the upgraded oil storage tank 
(T-UPG), the aqueous phase is routed to filtration (E-FLT), and hydrogen-rich gas is 
recompressed and recycled through C-H2 to enhance hydrogen utilization efficiency. 
Residual non-condensable gases and process emissions are treated in a gas scrubber (E-
SCR) prior to final disposal through a flare system (FLARE). 

 

Table 3. Utilities specification for each process unit 

Code Process Unit  Primary Process  Parameters  Input / Output 

E-DRY Biomass Dryer Reduce rice husk 

moisture content prior 

to grinding. 

120–180 °C; 1 

atm; 1 batch 

In: S1 (wet rice husk) 1 t 

Out: dried rice husk 0.95 

t 

E-GRD Grinder / 

Hammer Mill 

Grind rice husk to a 

particle size < 2 mm. 

Ambient; 1 atm In: 950 kg 

Out: 950 kg powder 

T-FEED Feed Hopper Provide buffering and 

automatic feeding to the 

reactor. 

Ambient; N₂ 

inert; < 1 vol% O₂ 

In: 950 kg 

Out: 950 kg 

Feed Lock Lock Hopper 

(N2 purge) 

Maintain an inert 

atmosphere during 

feeding. 

< 2 bar; N₂ 

blanket 

In: 950 kg 

Out: 950 kg 

R-CFP Catalytic Fast 

Pyrolysis 

Reactor 

Convert biomass into 

bio-oil, gas, and char via 

HZSM-5 catalysis. 

Zone 1: 400 °C; 

Zone 2: 480–500 

°C; 1 atm 

In: 950 kg 

Out: S3 vapor 469 kg; S4 

char 300 kg; S5 gas 231 

kg 

S-CYC Cyclone 

Separator 

Separate solid char from 

gas/vapor. 

450–480 °C; 1 

atm 

In: S3 vapor 469 kg 

Out: S4 char 300 kg; S6 

vapor 469 kg 

E-COND Multistage 

Condenser 

(Quench + Ice 

Bath) 

Condense bio-oil vapor 

into a liquid phase. 

Stage 1: 40 °C; 

Stage 2: 0–5°C; 1 

atm 

In: S6 vapor 469 kg 

Out: S7 liquid (435 kg 

aqueous) + 34 kg 

S-DEC Oil–Water 

Decanter 

Separate the bio-oil and 

aqueous phases from 

the condensate. 

25–40 °C; 1 atm In: S7 469 kg 

Out: S9 oil 435 kg; S8 

(aq) 34 kg 

T-OIL Raw Bio-oil 

Tank 

Store crude bio-oil prior 

to upgrading. 

Ambient–60 °C; 1 

atm 

In: S9 oil 435 kg 

Out: feed to R-HDO 

E-PRE Preheater 

(Shell & Tube 

HE) 

Increase the bio-oil 

temperature prior to 

hydrotreating. 

120–150 °C; 10–

15 bar 

In: S9 oil 435 kg 

Out: S10 (oil + H2) ≈ 455 

kg 

C-H₂ Hydrogen 

Compressor 

Skid 

Compressed recycle and 

make-up H2 gas. 

Outlet 100–200 

bar; 25 °C 

In: S13 H₂ gas 38.8 kg 

Out: H2 make-up + 

recycle ≈ 60 kg 

R-HDO Hydrotreating 

Reactor 

Convert bio-oil into 

biodiesel via 

hydrogenation. 

250–400 °C; 100–

200 bar 

In: S10 oil + H2 ≈ 455 kg 

Out: S11 oil ≈ 378 kg; S12 

water ≈ 40 kg; S13 gas ≈ 

38.8 kg 
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S-HPSEP 3-Phase HP 

Separator 

Separate the HDO 

effluent into oil, water, 

and gas phases. 

50–80 °C; 100–

200 bar 

In: R-HDO effluent 

Out: S11 oil ≈ 378 kg; S12 

water ≈ 40 kg; S13 gas ≈ 

38.8 kg 

T-UPG Upgraded Oil 

Storage 

Store the final biodiesel 

product. 

Ambient; 1 atm In: S11 378 kg 

Out: S14 product to 

storage 

E-SCR Gas Scrubber 

/ Flare System 

Clean syngas (CO, CO2, 

CH4) and route it to the 

flare/genset. 

30–50 °C; 1 atm In: S5 gas 231 kg + minor 

vent 

Out: clean gas to 

flare/genset 

E-FLT Slurry Filter / 

WWTP Inlet 

Filter char and 

wastewater from the 

slurry stream. 

Ambient; 1 atm In: S4 300 kg + S8/S12 ≈ 

74 kg 

Out: slurry solid ≈ 300 

kg; WW ≈ 74 kg 

HOT-OIL Thermal Oil 

Heater 

Provide heating duty for 

E-DRY and E-PRE. 

180–250 °C; 3 bar Thermal loop fluid 

ICE-BATH 

/ CHILLER 

Cooling / 

Refrigeration 

Unit 

Provide cooling for E-

COND Stage 2. 

0–5 °C Cooling brine circuit 

N₂-GEN Nitrogen 

Generator 

Supply inert gas to the 

system. 

5 Nm3/h; 99.9% 

N₂ 

N₂ to T-FEED, R-CFP 

FLARE Flare Stack Incinerate off-gas (H2 / 

CO / VOC). 

700–1000 °C; 1 

atm 

Off-gas from E-SCR and 

C-H2 

WWTP Wastewater 

Treatment 

Treat liquid effluent 

from E-FLT and S-DEC. 

Ambient Effluent 74 kg 

 

3.2  Characterization and multicollinearity analysis of rice husk pyrolysis 

Based on the heatmap analysis of bio-oil synthesis, the most influential variable 
affecting bio-oil yield is volatile matter (r = 0.43), followed by hydrogen content (r = 0.25) 
and nitrogen content (r = 0.24). This indicates that feedstocks with high volatile and 
hydrogen content tend to produce greater quantities of bio-oil. Conversely, ash content 
shows a strong negative correlation with bio-oil yield (r = –0.43), suggesting that high ash 
concentrations hinder the conversion of feedstock into liquid products. These findings are 
consistent with those reported by Jerzak et al. (2024), who observed that moderate 
temperatures and volatile-rich feedstocks such as sewage sludge and microalgae can 
maximize bio-oil yields to over 35%. However, elevated pyrolysis temperatures result in a 
significant decrease in bio-oil yield due to secondary decomposition reactions.  

Accordingly, sewage slurry is adopted in this study as a reference domain to delineate 
an optimal pyrolysis severity window, because its volatile-rich character and well-
documented temperature sensitivity provide a robust empirical basis for identifying 
conditions that favor liquid formation before secondary cracking dominates. This slurry-
informed operating envelope is then transferred to rice husk-derived streams as an 
informed starting point, while explicitly accounting for the stronger ash-related inhibition 
expected in high-mineral feedstocks to avoid systematic overestimation of bio-oil yield. 

The correlation heatmap further reveals that, in addition to volatile matter, hydrogen 
(r = 0.25), nitrogen (r = 0.24), and carbon content (r = 0.22) are positively correlated with 
bio-oil yield. This supports the notion that volatile organic compounds, such as lipids, 
proteins, and carbohydrates in rice husk, serve as primary precursors for bio-oil via thermal 
cracking and volatilization. Jerzak et al. (2024) also emphasized that highly volatile fractions 
facilitate the release of light molecular species. In contrast, hydrogen stabilizes free radicals 
during thermal decomposition, thereby promoting the formation of stable aromatic 
compounds and liquid hydrocarbons. 
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Fig. 5. Multicollinearity heatmap on rice husk pyrolysis (a) for bio-oil synthesis; (b) for biochar 

synthesis; (c) for syngas synthesis 
 
In the context of biochar production, the heatmap reveals a positive correlation 

between biochar yield and ash content (r = 0.38), suggesting that inorganic constituents and 

a 

b 

c 
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thermally stable carbon structures are more resistant to degradation and therefore 
accumulate in the solid phase during pyrolysis. In contrast, the negative correlation with 
temperature (r = -0.39) indicates that, as temperature increases, the thermal decomposition 
of rice husk waste into bio-oil and syngas becomes more pronounced. The energetic 
characteristics of biochar are further reflected by a strong positive correlation with calorific 
value (r = 0.64) and a strong negative correlation with ash content (r = –0.87). Additionally, 
the atomic H/C (r = –0.60) and O/C (r = –0.39) ratios exhibit negative correlations with 
rising temperature, confirming that carbonization and deoxygenation processes intensify 
under higher thermal conditions (Vershinina et al., 2022). 

 
3.3 Multi-objective optimization for slurry pyrolysis benchmark 

In multi-objective optimization of rice husk pyrolysis, machine learning (ML) serves as 
a surrogate modeling approach to replace complex, computationally expensive physical 
simulations. The pyrolysis of sewage sludge entails nonlinear interactions among various 
process parameters (including temperature, residence time, and intrinsic feedstock 
properties) that are challenging to model using conventional mechanistic methods. ML 
enables rapid prediction of key outputs, such as bio-oil yield, biochar characteristics, and 
syngas composition, solely from historical datasets. 
 
Table 4. Machine learning performance analysis as a surrogate model 

Target Best Model R2 Score RMSE MSE MAPE 
Calorific value 

(MJ/kg) ExtraTrees 0.961892 0.58985 0.347923 0.054316 

O/C ratio (-) ExtraTrees 0.852925 0.151034 0.022811 0.48897 

Bio-char Yield (%) ExtraTrees 0.845811 6.894357 47.53216 0.22996 

Syngas CO2 (mol%) ExtraTrees 0.81222 8.363523 69.94851 0.23576 

Bio-oil Yield (%) ExtraTrees 0.760497 6.015574 36.18713 0.20994 

Syngas H2 (mol%) ExtraTrees 0.704197 6.930259 48.02849 1.54E+15 

H/C ratio (-) LGB 0.644423 0.185279 0.034328 0.33422 

Syngas Yield (%) LGB 0.637678 6.77032 45.83723 0.25237 

Syngas CO (mol%) ExtraTrees 0.60967 4.36807 19.08003 8.46E+14 

H/N ratio (-) ExtraTrees 0.584614 1.684675 2.83813 0.1868 

Syngas CH4 (mol%) ExtraTrees 0.572841 4.366069 19.06256 1.38E+15 

 
Model evaluation revealed that the Extra Trees Regressor achieved the highest 

predictive performance, with a coefficient of determination (R2) up to 0.96 and a root mean 
square error (RMSE) of less than 1 MJ/kg for calorific value estimation. This model also 
exhibited superior accuracy in predicting the oxygen-to-carbon (O/C) ratio and syngas CO2 
content, owing to its robustness against noisy data and its ability to capture complex feature 
interdependencies. Light Gradient Boosting Machine (LightGBM) proved effective for 
predicting the hydrogen-to-carbon (H/C) ratio and overall syngas yield, although its 
performance was slightly inferior. Nonetheless, some outputs (particularly CH₄ and CO 
concentrations in the syngas) remained prone to substantial predictive errors, indicating 
the need for improved data preprocessing or exploration of alternative modeling 
architectures. 
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Fig. 6. Pareto front on multi-objective optimization for (a) bio-oil vs bio-char; (b) syngas H2 vs CO2; 
(c) calorific value vs bio-char yield; (d) H/C vs O/C 

 
The Figure 6 above, illustrate key trade-offs among major product streams resulting 

from sewage sludge-derived slurry pyrolysis. Two-dimensional plots capture the trade-offs 
among bio-oil yield and bio-char yield, hydrogen and carbon monoxide fractions in syngas, 
and calorific value versus bio-char yield, with color gradients encoding auxiliary parameters 
such as H/C ratio or bio-oil yield. The van Krevelen diagram visualizes atomic-level energy 
quality indicators (H/C vs. O/C ratios) and serves as a diagnostic tool for assessing feedstock 
energy potential. Furthermore, the three-dimensional plot delineates the distribution and 
balance among bio-oil, bio-char, and syngas yields in relation to total product output, 
thereby reflecting the overall energy conversion efficiency of the process. 

 

 
Fig. 7. 3D Pareto interpretation for multi-objective optimization yields 

a b 
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Appendix 1 presents the optimal combinations of input parameters (including sludge 
composition, proximate analysis data, and operational conditions) that yield the best 
outcomes for each specific optimization target: highest bio-oil yield, maximum bio-char 
production, highest calorific value, and lowest oxygen-to-carbon (O/C) ratio. In addition to 
reporting the corresponding input and output values, Appendix 1 emphasizes the inherent 
trade-offs among product characteristics. It highlights the interrelationships among mass 
balances across the bio-oil, syngas, and biochar fractions. 

 

3.4 Optimization of technical parameter on process design 

According to Table 5, the catalytic fast pyrolysis (CFP) process for rice husk conversion 
to syngas and bio-oil requires high temperatures, low heating rates, and short vapor 
residence times (Balat et al., 2009). Elevated temperatures facilitate the rapid pyrolysis of 
cellulose, hemicellulose, and lignin, with hemicellulose decomposing between 470–530 K, 
cellulose between 510–620 K, and lignin between 550–770 K (Demirbas & Arın, 2002). For 
optimal rice husk CFP, the recommended temperature range is 850–1250 K, with a heating 
rate of 10–200 K/s, utilizing finely ground biomass and an oxygen-free environment (Balat 
et al., 2009). The bio-oil production process should involve rapid heating and quenching to 
yield intermediate liquid products. Vapor residence time should be maintained below 2 
seconds, with aerosols and pyrolysis vapors cooled to form bio-oil, while extended gas 
residence time favors increased syngas production. For improved results, rice husk particles 
should have a residence time of 0.5–10 seconds and a particle size not exceeding 1 mm 
(Balat et al., 2009). 

 

Table 5. Optimal parameters for catalytic fast pyrolysis of biomass  

Pyrolisis 

Technology 

Main 

products 

Optimal 

temperature (K) 

Heating rate 

(K/s) 

Particle size 

(mm) 

Solid residence 

time (s) 

Fast Bio-oil and 

syngas 

850–1250  10–200  <1 0.5–10 

(Balat et al., 2009) 
 
Solid yields are lowest during the CFP process. As shown in Table 5, bio-char 

production yield decreases significantly to below 50% when the temperature exceeds 683 
K. Therefore, optimal temperatures for bio-char formation are below 575 K, with particle 
sizes ranging from 5 to 500 mm and longer residence times to promote char formation. 
Higher temperatures are unfavorable because they increase tar production during CFP 
(Balat et al., 2009). Consequently, slow pyrolysis is recommended for maximizing biochar 
yield (Elliot et al., 1991). 
 
Table 6. Various results of solid biowaste pyrolysis in relation to temperature 

Temperature (K) Char yield (%) Liquids yield (%) Gas yield (%) 
507 97.0 0.0 3.0 
584 76.2 15.9 7.9 
655 62.9 25.4 11.7 
683 49.0 35.0 16.0 

(Küçük & Demirbaş, 1997) 

 

3.5 Value chain and techno-economic analysis 

The proposed system is embedded within a value chain framework that emphasizes a 
zero-waste and integrated agricultural energy system. In this framework, farmers are 
positioned as key upstream actors responsible for supplying rice husk residues, thereby 
directly linking agricultural waste management with renewable energy production. Rather 
than being treated as passive waste generators, farmers participate as incentivized 
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suppliers within a community-based value chain, enabling mutual benefits for both the 
farming community and the designed system. 

Through structured collection and distribution of rice husk residues, farmers 
contribute to reducing localized waste accumulation while simultaneously converting an 
otherwise discarded by-product into an additional income stream. This arrangement 
provides economic incentives through waste-based compensation schemes, transforming 
agricultural residues into monetizable resources. From the system perspective, the 
availability of locally sourced feedstock reduces procurement costs and logistical 
complexity, supporting operational continuity at the community scale. This reciprocal 
relationship forms the foundation of grassroots energy communities, where value creation 
and waste mitigation occur simultaneously within a localized supply network. 

From a technical standpoint, the value chain is underpinned by the conversion 
performance of rice husk through the HZSM-5-assisted catalytic fast pyrolysis process. 
Based on literature benchmarks, the CFP process yields approximately 46.90% (w/w) bio-
oil from rice husk feedstock (Cai et al., 2018). Accordingly, the processing of one metric ton 
of rice husk is expected to generate approximately 469 kg of crude pyrolysis bio-oil. This 
intermediate product subsequently undergoes upgrading via hydrotreating, where oxygen 
content is reduced to approximately 20% to enhance fuel stability and combustion 
efficiency. Literature-reported upgrading efficiencies indicate a biodiesel-equivalent 
conversion rate of 32.20% (w/w) relative to the bio-oil feed (Wang et al., 2021; Fermoso et 
al., 2017), corresponding to 151.02 kg of upgraded fuel product. 

 

Table 7. Financial projection of proposed system 

Item (mil.) /year 2025 2026 2027 2028 2029 2030 

Cash Inflow 713.8 749.5 787.0 826.3 867.7 911.0 

Cash Outflow  763.2 761.0 728.7 702.9 682.2 665.7 

Taxable Income   58.27 123.4 185.4 245.3 

Earnings After Tax 

and Depreciation 

-49.36 -11.48 12.81 27.15 40.79 53.97 

 

The system is proposed for pilot-scale implementation, and the financial projection is 
developed to evaluate its economic feasibility during the initial deployment phase. Table 9 
summarizes the techno-economic assessment for the 2025–2030 period. In the first year of 
operation (2025), the project recorded a negative taxable income of IDR 49,367,206.48, 
reflecting capital recovery and operational ramp-up typical of early-stage deployment. 
During this period, cash inflow amounts to IDR 713,860,967.63, while cash outflow is IDR 
763,228,174.10. Despite this initial deficit, the investment remains financially viable, as 
indicated by a positive Net Present Value (NPV) of IDR 50,428,772.68 and an Internal Rate 
of Return (IRR) of 23.78%. 

 
Table 8. Key techno-economic indicators based on projected financial performance 

Techno-Economic Key Parameters Value  

Net Present Value (IDR)  50,428,772.68  

Return on Investment (%)  12.82 

Internal Rate of Return (%)  23.78 

Payback Period (year) 2.93 

 

Operational stabilization in subsequent years leads to a marked improvement in 
financial performance. By 2026, losses will decrease, and earnings before interest, taxes, 
depreciation, and amortization (EBITDA) will show positive growth, reflecting improved 
process utilization and enhanced value capture across the supply chain. By 2030, annual 
cash inflow is projected to reach IDR 911,087,591.11, with a Return on Investment (ROI) of 
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12.82%. The estimated Payback Period (PBP) of 2.93 years indicates that the initial 
investment can be recovered in less than three years, underscoring the economic robustness 
and scalability potential of the proposed system. 

 

3.6 Sensitivity analysis 

Sensitivity analyses were conducted in this study to evaluate the robustness of the 
financial performance of the catalytic fast pyrolysis and hydrotreating-based rice husk 
waste management system to various technical and economic uncertainties. In economic 
modeling, sensitivity analysis serves as a formal robustness test that examines how 
variations in model outputs can be quantitatively attributed to variations in fundamental 
input parameters (Hermeling & Mennel, 2008). Specifically, it translates uncertainty in 
basic economic parameters into uncertainty in key output indicators, thereby providing a 
prerequisite for drawing reliable economic conclusions from numerical simulations 
(Hermeling & Mennel, 2008). 

 

Table 9. Sensitivity analysis results when there is a 10% increase in the value of the dollar 

Item (mil.) 

/year 

2025 2026 2027 2028 2029 2030 

Cash Inflow IDR 785.2 IDR 824.5 IDR 865.7 IDR 909.0 IDR 954.4 IDR 1.002.1 

Cash Outflow  IDR 831.0 IDR 830.0 IDR 795.9 IDR 768.6 IDR 746.8 IDR 729.4 

Taxable Income   IDR 69.7 IDR 140.3 IDR 207.6 IDR 272.7 

Earnings After 

Tax and 

Depreciation 

-IDR 45.83 -IDR 5.52 IDR 15.35 IDR 30.87 IDR 45.67 IDR 60.01 

 

Although the baseline financial projections show positive economic viability, key 
economic parameters (with a first-order focus on exchange rate fluctuations as a 
representative macroeconomic uncertainty) are dynamic and have the potential to change 
at the real implementation stage, especially in the context of community-scale systems. In 
this study, the exchange rate is selected as a first-order macroeconomic proxy due to its 
direct influence on both imported hydrogen and catalyst costs in the proposed system. 
Accordingly, the present sensitivity analysis aims to identify the financial and technical 
parameters that have the most influence on the key economic viability indicators, namely 
Net Present Value (NPV), Internal Rate of Return (IRR), and Payback Period (PBP), under a 
deterministic one-factor sensitivity framework. 

 
Table 10. Baseline techno–economic analysis results 

Techno-Economic Key Parameters Value 
Net Present Value (IDR)  73,158,972.51 
Return on Investment (%)  13.59 
Internal Rate of Return (%)  33.61 
Payback Period (year) 2.92 

 

Although the present analysis focuses on exchange rate variation as a dominant 
macroeconomic uncertainty, other parameters such as bio-oil upgrading yield, product 
selling price, and operating cost are also expected to influence system feasibility. These 
parameters are therefore recommended as future sensitivity dimensions to be explored as 
more operational data become available from pilot-scale deployment. Based on the results 
presented in Table 10, a 10% increase in the dollar exchange rate leads to an increase in 
NPV by 31.06%, ROI by 6%, and IRR by 41.33%, accompanied by a reduction in PBP by 0.01 
years (approximately 3.65 days). These results indicate that exchange rate fluctuations 
exert a strong influence on financial performance indicators. However, under practical 
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deployment conditions, currency depreciation may simultaneously increase both revenue 
and imported cost components, suggesting that net profitability will depend on the balance 
between export-linked product pricing and imported input expenditures. 

 

Table 11. Sensitivity analysis results when there is a 5% increase in demand 

Item (mil.) /year 2025 2026 2027 2028 2029 2030 

Cash Inflow IDR 824.5 IDR 865.7 IDR 909.0 IDR 954.4 IDR 1.002 IDR 1,002.1 

Cash Outflow  IDR 862.4 IDR 863.0 IDR 828.9 IDR 801.6 IDR 779.8 IDR 729.4 

Taxable Income   IDR 80.0 IDR 140.3 IDR 222.6 IDR 272.7 

Earnings After 

Tax and 

Depreciation 

-IDR 45.83 IDR 2.722 IDR17.62 IDR 33.61 IDR 48.91 IDR 63.78 

 

Furthermore, parameter changes will be made when there is a 5% increase in product 
demand. If there is an increase in product demand, the NPV value will increase by 94.34%, 
ROI by 13.02%, and IRR by 108%. From a community deployment perspective, the 
sensitivity analysis highlights the importance of financial robustness under market and 
macroeconomic uncertainty. Since farmer income, feedstock supply continuity, and local 
participation are directly linked to system profitability, maintaining positive NPV and short 
payback periods under parameter variations is essential to sustain long-term community 
engagement. This underscores the need for adaptive pricing mechanisms, flexible incentive 
schemes, and modular scaling strategies to mitigate financial risks at the grassroots 
implementation level. 

 
Table 12. Techno–economic key parameters under a 5% demand increase scenario 

Techno-Economic Key Parameters Value 
Net Present Value (Rp)  98,007,694.13 
Return on Investment (%)  14.49 
Internal Rate of Return (%)  49.49 
Payback Period (year) 2.91 

 

3.7 Proposed methods for community deployment 

Beyond techno-economic feasibility, the proposed value chain is designed to be 
deployable within a community-based framework that positions local actors as active 
participants rather than passive resource providers. In Indonesia, the relevance of end-to-
end and community-integrated waste management systems is increasingly reflected in 
ongoing industrial practices. One such example is the circular economy initiative 
implemented by CAP in collaboration with local community groups, including KSM Sehati, 
through the Integrated Waste Processing Facility/Instalasi Pengolahan Sampah Terpadu 
(IPST) Asari in Cilegon. This initiative demonstrates an operational model in which 
community-based waste collection, industrial processing, and product valorization are 
integrated within a single deployment framework. 

 

 
Fig. 8. Field visit to integrated waste processing facility 
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A tangible outcome of this system is the development of PLUSRI, a derived oil product 
obtained from processed plastic waste, which is currently being evaluated for internal 
company use as a substitute fuel for corporate vehicle fleets (Figure 9). The existence of 
PLUSRI indicates that community–industry integrated waste-to-fuel pathways are not 
merely conceptual, but can be translated into standardized fuel products with defined 
specifications and targeted end-use applications. This precedent is particularly relevant to 
the present study, as it provides empirical evidence that pilot-scale waste valorization 
systems can be embedded within industrial value chains while maintaining strong linkages 
to community-level feedstock supply. 

 

 
Fig. 9. PLUSRI, a derived oil product for company use  

(Bakti Barito Foundation, n.d.) 

 

The experience from IPST Asari illustrates that community involvement can be 
effectively operationalized within industrial waste management frameworks, not merely as 
a social add-on but as a functional component of system continuity and resource recovery. 
This approach is consistent with findings from community-based economic studies, which 
emphasize that sustainable local development emerges when communities are engaged as 
subjects of economic activity, supported by capacity building, shared ownership, and 
collaborative governance structures (Wahib & Susanto, 2024). Within this framework, rice 
husk suppliers in the proposed system are integrated not simply as feedstock providers, but 
as stakeholders embedded within a localized energy value chain, contributing to both 
material supply and system resilience. 

This deployment philosophy aligns with bottom-up approaches to economic and supply 
chain design, which emphasize decentralized decision-making and the utilization of locally 
generated operational data over centralized, top-down planning. Shapiro (1998) argues that 
bottom-up analytical systems are particularly effective in environments characterized by 
uncertainty, heterogeneity, and dynamic constraints, as decisions are informed by 
transactional and operational data rather than aggregated strategic assumptions. In 
contrast, top-down economic models rely heavily on centralized forecasts and averaged 
parameters, which may inadequately represent local variability in community-scale 
systems. 

For community-based bioenergy systems, such bottom-up characteristics are 
especially relevant, as feedstock availability, quality, and logistics reliability vary spatially 
and temporally across agricultural communities. By structuring the value chain around 
decentralized feedstock aggregation and pilot-scale processing hubs, the proposed system 
enhances adaptability to local conditions while reducing dependence on large-scale 
coordination mechanisms. The integration of machine learning surrogate models further 
reinforces this bottom-up analytical framework. Rather than functioning as centralized 
optimization tools detached from operational realities, surrogate models are trained on 
process-level data to capture nonlinear relationships among feedstock properties, operating 
conditions, and product yields. This data-driven approach enables localized optimization 
and adaptive decision support, consistent with bottom-up analytical information systems 
that translate operational data into actionable insights (Shapiro, 1998). 
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The deployment strategy also draws on principles of community system design, which 
emphasize that technological systems must be embedded in existing social and operational 
practices to achieve long-term adoption and sustainability. Agostini et al. (2002) 
demonstrated that community systems are most effective when they augment daily routines 
and local interactions rather than functioning as externally imposed infrastructures. 
Accordingly, the proposed system aligns rice husk collection, logistics scheduling, and 
incentive mechanisms with established agricultural workflows to minimize participation 
barriers and sustain engagement. 

From a supply chain perspective, the system is conceptualized as an integrated, multi-
stage chain incorporating reverse logistics for agricultural residues. As articulated in supply 
chain design theory, effective resource recovery systems require coordination among 
upstream suppliers, processing nodes, and downstream markets to optimize overall system 
performance rather than the performance of isolated components (Beamon, 1998). Within 
this framework, community-based feedstock aggregation functions as the upstream node, 
while the pilot-scale pyrolysis unit serves as the central processing hub, converting low-
value residues into energy-dense intermediates and final fuel products. 

By integrating bottom-up participation, localized logistics, modular processing, and 
data-driven optimization, the proposed deployment model supports both technical 
efficiency and social sustainability. Compared to top-down, centralized energy 
infrastructures, this approach enhances system resilience by reducing exposure to supply 
disruptions, enabling incremental scaling through replication across agricultural clusters, 
and continuously adapting operational strategies using locally generated data. The resulting 
framework provides a theoretically grounded and practically viable pathway for 
implementing pilot-scale pyrolysis systems within agricultural communities while 
remaining aligned with broader techno-economic and supply chain optimization objectives. 

Beyond its immediate application, this framework also offers a transferable blueprint 
for decentralized bioenergy deployment across agricultural regions with comparable 
residue availability and community structures, highlighting the need for future policy 
frameworks that support modular replication, standardized community contracts, and data-
enabled governance to enable scalable and regionally adaptive waste-to-energy systems. 

 

4. Conclusions 
 
This study represents a strategic advancement in the development of renewable 

bioenergy systems by integrating technological innovation, artificial intelligence, and 
agricultural community engagement within a unified sustainable energy framework. By 
combining HZSM-5-based catalytic fast pyrolysis (CFP) with a two-stage hydrotreating 
process, rice husk biomass is effectively converted into bio-oil and biochar, achieving 
optimized conversion efficiency. While literature-recommended CFP temperatures span 
850–1250 K, the present design adopts a moderate dual-zone configuration (400–500°C) as 
a pilot-scale compromise between liquid yield, catalyst stability, and community-scale 
operability. Under these conditions, thermocatalytic reactions conducted at residence times 
of 2–3 s, followed by hydrogenation employing Ni–Mo/Al2O3 catalysts, achieve up to 90% 
deoxygenation, yielding liquid bio-oil fractions of up to 46.9 wt%. 

Machine-learning-based optimization using Extra Trees and LightGBM models enables 
accurate prediction of product yields, calorific values, and elemental ratios (e.g., C/H), 
achieving coefficients of determination (R²)> 0.95, thereby allowing precise control over 
product quality and enabling adaptive operation under biomass feedstock variability. From 
a techno-economic perspective, the system demonstrates strong financial feasibility, with 
an internal rate of return (IRR) of 23.78%, a return on investment (ROI) of 12.82%, a 
payback period of 2.93 years, and a net present value (NPV) of approximately Rp50.4 
million, based on a modular process design with a capacity of 1 ton feedstock per batch. 

By integrating digitalized supply chain management and volume-based compensation 
mechanisms, the proposed framework enhances energy efficiency and accelerates 
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decarbonization within the agricultural sector, while simultaneously establishing an 
inclusive business model that positions farmers as integral stakeholders in a low-carbon, 
intelligent, and globally competitive national energy ecosystem.
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Appendix 1. Recommended input–output parameters for pyrolysis 

Input 

Solutions Ultimate analysis Proximate analysis Operating conditions 

Carbon 

content 

(wt%) 

Hydrogen 

content 

(wt%) 

Nitrogen 

content 

(wt%) 

Oxygen 

content 

(wt%) 

Sulfur 

content 

(wt%) 

Volatile 

matter 

(wt%) 

Fixed 

carbon 

(wt%) 

Ash 

(wt%) 

Temperature 

(°C) 

Heating rate 

(°C/min) 

Reaction 

time (min) 

Top Bio-oil 

Yield 

50.468 5.751 7.349 33.628 0.810 62.967 0.944 12.058 1030.55 58.121 101.750 

Top Bio-char 

Yield 

37.277 4.055 9.562 3.815 1.216 47.997 14.755 35.800 227.400 9.738 23.672 

Balanced Yield 

(≈100%) 

50.567 6.232 7.368 32.266 1.985 64.708 7.393 13.204 562.612 9.600 101.750 

Top Calorific 

Value 

35.239 4.694 1.257 36.691 0.344 71.720 1.414 16.425 307.477 9.201 59.278 

Minimum O/C 

Ratio 

36.862 5.212 8.585 15.926 0.996 60.797 7.947 28.505 765.870 10.729 75.608 

Output 

Solutions Bio-oil Syngas Bio-char 

 
Bio-oil 

Yield (%) 

Syngas Yield 

(%) 

Syngas H2 

(mol%) 

Syngas 

CH4 

(mol%) 

Syngas 

CO2 

(mol%) 

Syngas CO 

(mol%) 

Bio-char 

Yield (%) 

Calorific 

value 

(MJ/kg) 

H/C ratio (-) H/N ratio (-) O/C ratio (-) 

Top Bio-oil 

Yield 
49.519 29.419 28.240 13.726 28.631 18.362 25.432 11.072 0.378 4.921 0.497 

Top Bio-char 

Yield 
13.042 4.586 3.071 4.680 83.476 6.001 78.918 10.336 1.136 10.785 1.131 

Balanced Yield 

(≈100%) 
42.121 21.515 28.399 14.629 32.557 15.215 36.362 11.567 0.071 3.917 0.845 

Top Calorific 

Value 
31.237 7.825 7.402 8.946 51.065 10.015 56.254 16.416 0.718 10.622 0.401 

Minimum O/C 

Ratio 
40.566 25.290 46.719 10.601 21.585 20.585 34.885 11.426 0.528 6.229 0.291 
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