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ABSTRACT  
Background: Machine learning (ML) methods are prevalent forecasting model construction tools that 

outperform conventional methods. This study is a systematic review of machine learning method utilization for 
load and energy consumption forecasting between 2020-2025. In all ,157 studies were explored for the purpose 
of this review. The study covered a variety of methods, ranging from simple algorithms such as linear regression 
and support vector machines to complex deep learning models such as LSTM, Convolutional Neural Networks 
CNNs, Transformer models, Graph Neural Networks GNNs, and particular ensemble and hybrid methods. 
Methods: The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guideline was 
used to evaluate methodological quality in the review. Primary academic databases such as IEEE Xplore, 
ScienceDirect, SpringerLink, Scopus, and preprint servers arXiv were extensively searched. English-language 
peer-reviewed journal articles and high-quality preprints focused on Machine Learning ML-based electric load 
or energy demand forecasting were considered. Hardware or other domains' optimization was excluded. Data 
extraction targeted model types, application contexts, dataset characteristics, and evaluation metrics. Findings: 
Findings of this study revealed that CNN-LSTM models achieved top accuracy (MAPE: 3.1%–6.2%), followed by 
LSTM (4.2%–7.8%) and Transformers (3.8%–5.9%) with high resource demands. Traditional ML had higher 
errors (5.1%–9.3%) but remained useful for small data and interpretability. Above all, quality data and proper 
pre-processing always prevail over the effect of selected machine learning techniques. Conclusion: Machine 
learning has assisted energy forecasting a lot but falls short on usability and reliability. More technology and 
collaboration are required to succeed with renewable energy systems. Novelty/Originality of this article: This 
study describes new developments in Machine learning for energy forecasting and mentions trends and issues 
to be expected. It recommends what is in the pipeline for future research and applications. 
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1. Introduction  
 

The global energy sector is experiencing a deep revolution driven by the urgent need 
to mitigate climate change, achieve sustainability, and ensure energy security. At the heart 
of this shift is the rapid growth of renewable sources of energy, which are now becoming 
technologically viable and economical, where it is plausible that renewables are able to 
provide 100% of energy requirements and help alleviate global energy requirements by 
2040 (Bogdanov et al., 2021; Makarov et al., 2020). This shift gets traction through 
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innovation in digital technology, which maximizes energy distribution, enhances efficiency, 
and facilitates smart energy management but poses issues like cybersecurity and workforce 
adjustment (Liu & Lu, 2021; Nazari & Musílek, 2023). All this has created new challenges 
for running energy systems, so providing effective forecasting of load and energy 
consumption has never been more critical (Mystakidis et al., 2024). The practical and 
efficient operation of power systems in the modern era relies on the ability to predict 
patterns of electricity load and energy use over various time frames. In the aftermath of the 
reshaping of the world's energy landscape due to the pressures of climate change mitigation 
and adopting renewable forms of energy, the complexity and challenge of energy 
forecasting have amplified considerably (Matijašević et al., 2022). The growing penetration 
of intermittent RES, such as solar and wind power, the spread of DERs, such as EVs and 
battery storage systems, and the move towards intelligent, interactive distribution 
networks bring unprecedented levels of uncertainty and variability into energy supply and 
demand (Chen et al., 2025; Matijašević et al., 2022). Therefore, traditional forecasting 
methods and linear statistical models are progressively unable to capture modern energy 
systems' complexity and non-linear dynamics. Accurate forecasting is critical to many 
operation and planning processes in the energy system. Short-term load forecasting (STLF), 
typically one week ahead, is crucial to real-time grid operation, economic dispatch, unit 
commitment, ancillary service procurement, and grid stability (Perçuku et al., 2025). STLF 
errors can result in sub-optimal utilisation of the resources, higher operating costs, and 
even violate system reliability. Medium-term forecasting (MTF), between a week and one 
year, guides fuel procurement, maintenance planning, and hydro-thermal coordination 
decisions. Long-term forecasting (LTF) has been critical for infrastructure planning, 
generation and transmission investment, and policymaking (Perçuku et al., 2025). 
Moreover, at the building level, accurate energy consumption prediction is essential in 
optimizing building energy management systems to engage in demand response and fully 
achieve zero-energy buildings (Chen et al., 2025). 

In reaction to limitations with conventional approaches and motivated by the promise 
of enormous amounts of data from weather forecasts, sensors, and smart meters, machine 
learning (ML) techniques are becoming valuable tools for energy forecasting. ML methods, 
including traditional methods like linear regression, support vector machines (SVM) and 
tree models, and advanced DL architectures like Artificial Neural Networks (ANNs), 
Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM) networks, and 
Convolutional Neural Networks (CNNs), provide the ability to represent complex, non-
linear relationships and learn from experience without explicit physical modelling 
(Matijašević et al., 2022; Perçuku et al., 2025). Other recent research has targeted numerous 
application ML models, from overall system load and building-level consumption prediction 
to RES production and efficiency management in intelligent distribution systems (Chen et 
al., 2025; Matijašević et al., 2022). The rapid development of ML methods and their far-
reaching applications in the energy forecasting arena necessitate regular and periodic state-
of-the-art updates. 

The shift in the energy system fueled by the necessity to reduce climate change, achieve 
sustainability, and achieve energy security has not only fetched its dividends but also 
complex dynamics, which traditional forecasting abilities cannot handle (Bogdanov et al., 
2021; Makarov et al., 2020). The coming of renewable sources, distributed energy resources 
(DERs), and smart grids brought an era of record uncertainty and volatility in the utilization 
of power generation (Chen et al., 2025; Matijašević et al., 2022). It has made the utilizability 
of exact and genuine forecasting tools more than ever necessary (Mystakidis et al., 2024). 
Machine and deep learning techniques have proved incredible capability in overcoming this 
challenge. They utilize complex, nonlinear patterns in modelling and handling massive, 
multi-source datasets such as weather patterns and economic and historical load readings 
(Matijašević et al., 2022; Perçuku et al., 2025). 

 Notwithstanding, the increase in research volume, earlier reviews tend to refer to 
past methods or one sub-domain. This leaves room for an encompassing, systematic review 
of progress at the methodological and application level between 2020 and 2025, a time of 
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fast-paced innovation and the growing deployment of ML models into actual energy 
systems. The current study fills the gap by providing a well-structured synthesis of the novel 
models, tools, and validation methods used across forecasting applications. 

Though many reviews have been presented to the public domain, the subject continues 
to be active with new algorithm design, the fusion of complementary approaches, and areas 
of application. A comprehensive and recent review must summarize outcomes, indicate 
directions for new trends, analyze strengths and weaknesses of different methodologies in 
certain circumstances, lead towards chronic issues, and give the reader the direction for 
future research. More so, previous reviews have emphasized specific sub-domains or 
methodologies, but a general systematic summary for 2020 and beyond is helpful to gain 
insights into the contemporary scenario. Importantly, this paper is a systematic review of 
the applications of machine learning methods in load and energy consumption prediction 
with emphasis on literature from 2020 till the first quarter of 2025. The overarching aim of 
this study is to present an extensive overview of ongoing developments, applications, and 
challenges in the field. In particular, the review seeks to list and classify the most widely 
used Machine Language (ML) methods applied to load and energy forecasting over the past 
few years, describe the particular areas of application in which these ML methods are 
applied (e.g., STLF, building energy prediction, smart grid regulation), discuss the 
techniques employed, from the data to pre-processing, feature construction, and 
performance indicators, summarise the significant findings on the performance, strengths, 
and weaknesses of various ML methods from the literature, identify current research 
trends, current challenges (e.g., addressing uncertainty in the data, scalability, 
interpretability), and future research directions.  

The structure of this research has been designed carefully to provide methodological 
solidity and academic uniformity. Section 1 provides a comprehensive introduction, setting 
the background, context, and purpose of the study. Section 2 provides a comprehensive 
literature survey wherein the scope and structure of related scholarly work are clearly 
described to provide scholars, practitioners, and policymakers with an apt and integrated 
conceptual framework. Particular emphasis is placed on the innovative applications of 
machine learning (ML) to address the challenges of load prediction and energy consumption 
forecasting in modern power grids. Section 3 outlines the methodological framework, which 
includes the research methodology, data sources, selection criteria, and analytical methods 
employed to ensure replicability and scholarly rigour. Section 4 presents a critical synthesis 
and systematic critique of the studies under investigation. This section compares the 
different methodological techniques, model settings, and evaluation measures employed 
within the chosen literature. It presents an in-depth comparative analysis of various ML 
techniques, highlighting their respective strengths, weaknesses, and areas for 
improvement. 

 In addition, this section presents the latest trends and technologies in the field, 
recognising their profound theoretical and practical importance, along with contemporary 
issues like data quality limits, generalizability, and the interpretability of high-dimensional 
models. Section 5 concludes with a concise yet critical overview, synthesising the key 
findings from the review and outlining an ambitious research agenda. The suggestions focus 
on methodological improvements, interdisciplinary, and policy relevance. The research, 
analysis, and methodological norms throughout are accurately weighed to enable a 
reasonable synthesis of recent developments in machine learning applications to energy 
systems. Moreover, the review not only sheds light on the state of affairs but also inquiries 
into the broader implications, possible avenues, and inherent limitations of ML applications 
in this case. 

Although several studies on both Machine Learning (ML) and Deep Learning (DL) 
techniques have been published across various journals between 2020 and 2025, this 
present study systematically compiles evidence from a carefully selected set of 157 peer-
reviewed journal articles. These papers were rigorously selected and appraised against pre-
specified inclusion and exclusion criteria for relevance, methodological quality, and 
representativeness across a range of use areas. The complete list of studies analysed is 
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presented in Table 2 of the Appendix and constitutes a strong basis for the comparative and 
thematic analyses conducted in this research. The rapid progress in machine learning (ML) 
and deep learning (DL) methods has revolutionised the field of energy load forecasting in 
recent years, with newer models consistently outperforming conventional statistical 
approaches. Some such models are Long Short-Term Memory (LSTM) networks, which have 
emerged as a prominent technique due to their high ability to extract long-term temporal 
patterns. Studies by Awais et al. (2020) and Zeb et al. (2020) achieved predictive accuracies 
of 96.3% and 98.6%, respectively, in proving that DL cutting-edge technology is justified. 
The use of CNNs combined with LSTM architecture has also enhanced predictability, as 
demonstrated by Wan et al. (2023), who achieved 7.3% and 5.7% improvements in short-
term load forecasting over standalone LSTM models. Similarly, ensemble and hybrid 
techniques have gained prominence for their ability to optimise model performance across 
diverse data scenarios. For instance, Koukaras et al. (2023) reported mean absolute 
percentage errors (MAPE) as low as 5.39%, reaffirming the superiority of multi-model 
configurations. 

There is a shift in paradigm towards ensemble and hybrid-based paradigms, advancing 
away from isolated algorithm forms, which directs current research directions. Initial 
attempts, like Bouktif et al. (2020), were the metaheuristic optimisation-based extension of 
an individual model. Current research increasingly depicts a trend towards selecting 
multiple paradigms of modelling for better generalisation and convergence. Hafeez et al., 
(2020) further presented the FS-FCRBM-GWDO hybrid model, which is more accurate and 
efficient than baseline models. Adnan et al. (2022) confirmed the efficacy of hybrid models 
about other different criteria. The same applies to 2025 research; for example, Liu et al. 
(2025) detailed how multi-task architecture and transfer learning are the underlying 
working principles for low-data hybrid energy systems. 

Conversely, Heng (2025) introduced the MTL-GAN model and demonstrated how 
representation learning, in a joint manner, evolved from straightforward LSTM models to 
advanced multi-task networks that leverage multimodal energy data. Recent advancements 
also indicate an increased emphasis on the complexity of multi-energy load forecasting and 
the demands of integrated energy infrastructure. Yao et al. (2022) demonstrated the 
effectiveness of attention-based CNN-DBILSTM models in extracting correlations between 
electricity, heat, and gas loads, achieving a prediction accuracy rate of 97.99%. Geng et al. 
(2024) further linked load optimization with sustainability, showing that multi-scale CNNs 
could reduce carbon emissions by over 238,000 kg weekly. Building on decentralization and 
privacy, Wang et al. (2023) successfully deployed federated learning for community energy 
forecasting, achieving 97% accuracy and a 92% F1 score. Follow-ups on these 
developments will be focused on further development in 2025. For instance, Liu et al. 
(2025) demonstrated how transfer and federated learning approaches achieve the best 
performance while preserving data privacy in real-world field applications. Huang and 
Huang (2024) brought the field to a whole new height by creating energy-sustainable DL 
models with no computation burden at all but without sacrificing predictive accuracy. 
Altogether, these achievements bring ML forecasting to the height of new, green, smart, and 
privacy-conscious power grids. 

The advancements in deep learning (DL) and machine learning (ML) over the years 
have dramatically increased the accuracy and credibility of load and energy consumption 
forecasting in contemporary power systems (Chandrasekaran & Paramasivan, 2024). Deep 
learning models such as convolutional neural networks (CNNs), recurrent neural networks 
(RNNs), and their hybrids have a higher potential for learning complex spatial and temporal 
patterns in energy data. These models will likely surpass common statistical and 
conventional ML methods in short-term and medium-term forecasting scenarios (Zhang et 
al., 2023; Abujazar et al., 2023). These models specifically excel with the uncertainty from 
intermittent renewable power sources and volatile consumer demand, thus allowing for 
more powerful and responsive grid operations (Hussain et al., 2022; Ahmadi et al., 2022). 

Other methodological improvements, such as dimensionality enhancement, 
spatiotemporal modelling, and hyperparameter optimization, have also been shown to 
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improve model robustness and predictive ability (Jalalifar et al., 2023; Yahyaeian et al., 
2023; Zhang et al., 2023). All such comparative analyses always shed light on the optimal 
performance of deep learning models, primarily Long Short-Term Memory (LSTM) 
networks, Gated Recurrent Units (GRUs), and Restricted Boltzmann Machines (RBMs), 
which have been found to achieve mean absolute percentage errors (MAPE) of less than 5% 
when integrated with multi-source data such as weather, economic, and historical load data 
(Jaber et al., 2023; Shirzadi et al., 2021; Tian et al., 2022). 

While artificial neural networks (ANNs) and traditional ML techniques such as support 
vector machines (SVMs) and random forests remain applicable, recent literature 
increasingly favours DL approaches due to their ability to extract features and effectively 
manage high-dimensional, nonlinear relationships automatically (Abujazar et al., 2023; 
Ahmadi et al., 2022; Hussain et al., 2022). However, there are significant problems, i.e., in 
model explainability, data quality, and reliance on diverse and large datasets for the proper 
training of models. Therefore, current research efforts still seek to address the optimization 
of DL architectures, incorporation of domain knowledge, and design of hybrid modelling 
methods to enhance the prediction performance and facilitate the development of 
intelligent, adaptive, and green energy systems (Chandrasekaran & Paramasivan, 2024; 
Jalalifar et al., 2023; Yahyaeian et al., 2023). 

The shift in the energy system fuelled by the necessity to reduce climate change, 
achieve sustainability, and achieve energy security has not only fetched its dividends but 
also complex dynamics, which traditional forecasting abilities cannot handle (Makarov et 
al., 2020; Bogdanov et al., 2021). The coming of renewable sources, distributed energy 
resources (DERs), and smart grids brought an era of record uncertainty and volatility in the 
utilization of power generation (Matijašević et al., 2022; Chen et al., 2025). It has made the 
utilizability of exact and genuine forecasting tools more than ever necessary (Mystakidis et 
al., 2024). Machine and deep learning techniques have proved incredible capability in 
overcoming this challenge. They utilize complex, nonlinear patterns in modelling and 
handling massive, multi-source datasets such as weather patterns and economic and 
historical load readings (Perçuku et al., 2025; Matijašević et al., 2022). 

The above literature presents a definite trend towards the predominance of deep 
learning (DL) and hybrid models for energy load forecasting, where the use of LSTM, CNN-
LSTM, and attention models consistently achieves better results compared to conventional 
statistical and traditional machine learning (ML) methods. Such a DL approach can provide 
increased complexity in energy data, including temporal and spatiotemporal correlations, 
with forecasting accuracy levels above 95%, as supported by the literature from Awais et al. 
(2020) and Chang et al. (2023). Ensemble and hybrid models, such as FS-FCRBM-GWDO 
(Khan et al., 2020) and MTL-GAN (Heng, 2025), exhibit greater convergence stability and 
generalization across datasets, with a trend in this direction. Development advances also 
lead to sustainable and integrated forecasting, whose application, for instance, attention-
based CNN-DBILSTM, supports multi-energy load forecasting and environmental 
optimisation (Yao et al., 2022; Geng et al., 2024). Similarly, privacy-conscious approaches 
like federated learning (Wang et al., 2023) and computationally viable DL models (Huang & 
Huang, 2024) reflect the growth of the field in security, decentralisation, and 
computationally viable practice. 

There is much yet to be explored in research. First, interpretability is one of the primary 
challenges of models, and the majority of deep learning models are "black boxes," posing a 
hindrance to trust, transparency, and regulatory compliance in the most critical energy 
applications. Secondly, the generalizability of the models across seasons, geography, and 
grid systems is limited, and hence, their level of applicability in real-world scenarios is 
modest. Domain adaptation and transfer learning techniques are becoming increasingly 
pertinent (Lie et al., 2025); however, a significant number of studies need to be done before 
dynamic flexibility can be attain. An enormous limitation is also data-centric: large, diverse, 
and high-quality data cannot be taken for granted everywhere upon which to train and run 
models at scale. In addition, while state-of-the-art models are highly accurate, their high 
computational requirements are a barrier to real-time or edge deployments. Future studies 
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should thus prioritise models that are explainable, domain-generalizable, scalable and low-
energy-intensive, as well as privacy-friendly data integration processes in order to harness 
the full potential of ML/DL in innovative and sustainable energy forecasting. 
 

 
Fig. 1. Framework for forecasting residential and commercial energy consumption using machine 

learning models 
(Nabavi et al., 2020) 

 

As shown in Figure 1, the author predicts domestic and commercial energy 
consumption by applying these socio-economic variables and machine learning techniques. 
Moreover, we considered most of the conventional energy modelling approaches and chose 
the TD modelling according to the data availability (as defined in the preceding subsection). 
We examined the aforementioned factors (i.e., variables) and underlying trends. 
Furthermore, we forecasted future values of variables like POP, GDP, NGP, EP, and RESH 
using a feed-forward Artificial Neural Network (ANN). Subsequently, we simulated energy 
consumption by TD modelling tools, namely Multi-Linear Regression (MLR), Logarithmic 
Linear Regression (LMLR), and Nonlinear AutoregRessive with exogenous input (NARX). 
The models are tested and compared. Finally, the model proposed is utilized to predict 
energy consumption up to 2,040. 
 
2. Methods 
 

This systematic review followed a conventional methodological design to generate an 
open, rigorous, and replicable evidence synthesis on machine learning (ML) applications for 
predicting electricity load and energy consumption. A systematic search procedure was 
conducted across some scholarly databases (e.g., IEEE Xplore, Scopus, Web of Science) and 
preprint archives (e.g., arXiv) for English-language articles from January 2020 through May 
2025 (see Table 1). The search utilized keywords associated with machine learning, 
prediction, and energy consumption using Boolean operators unique to each database. 
Inclusion comprised conference papers, peer-reviewed articles, systematic reviews of 
ML/DL methods applied in electricity forecasting, and exclusions on non-English language 
papers, non-ML research, and those not conveying empirical data and selecting articles 
involved abstract/title screening and full-text evaluation with data extraction prompted by 
a standardized template. The main information extracted was bibliographic information, 
ML method, datasets, performance measures, results, and directions for future studies. As 
shown in Figure 2, this procedure applied a systematic 12-step methodology for systematic 
reviews, maintaining methodological robustness and consistency in evidence integration. 
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Fig. 2. Systematic review methodology 

(The Chinese University of Hong Kong Library, 2024) 
 

Figure 3 shows the six fundamental phases of a machine learning pipeline: data 
collection, data cleaning, feature engineering, model training and selection, model testing 
and deployment, and monitoring and maintenance. The phases form a loop to construct, 
deploy, and tune successful machine learning models. 
 

 
Fig. 3. Typical Data Pre-processing Pipeline for ML-based Energy Forecasting 

(Parikh, 2024) 

 

3. Results and Discussion 
 
3.1 Study selection and characteristics 
 

An exhaustive systematic literature searches across several scholarly databases 
produced 2,847 articles associated with applying machine learning methods for energy and 
load forecasting. An explicit screening approach was used against clearly specified inclusion 
and exclusion criteria to ensure methodological quality and review consistency. Duplicate 
entries were first identified and removed, after which each study was assessed for relevance 
based on title, abstract, and full-text evaluation. Only peer-reviewed English-language 
articles addressing machine learning or deep learning models for energy or load forecasting 
were retained. Studies on unrelated fields, untested empirically, or concentrating solely on 
hardware and sensor design without considering modelling were ruled out. 
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Following such rigorous screening, 157 papers were shortlisted for detailed analysis 
(see appendix, Table 2). The time trend of the shortlisted papers reflects a definite rising 
trend in scholarly attention during the review period 23 of these studies came out in 2020 
and 28 in 2021. There were 35 in 2022, in line with the development of the application of 
advanced machine learning techniques to research energy systems. There were 42 total 
high research intensity studies in 2023. It fell to 24 studies in 2024 but was no less intense. 
At least five standalone papers were released in the first half of 2025, (see Figure 4) 
testifying to the continuation of this line of research and ongoing interest in the issue by the 
scientific and professional community interested in energy forecasting. This increase in 
publication activity is a consequence of the quickly growing interest and awareness about 
machine learning as a key tool to solve the complex issues about contemporary energy 
systems, especially regarding increased demand variability, renewable energy integration, 
and smart grid optimisation. 
 

 
Fig. 4. Distribution of selected studies by publication year (2020-2025) 

 

3.1.1 Machine learning techniques distribution 
 
The trend in Figure 5 shows a pronounced predominance of deep learning methods in 

studies covered under load and energy forecasting categories. Within them, Long-Short-
Term Memory (LSTM) networks were the most prevalent model, featuring in about 34% of 
the studies covered. Its popularity stems from the established ability of LSTM to learn 
temporal relations well in sequential energy data and, hence, suitability for time-series 
forecasting tasks. Following LSTM models, Hybrid Convolutional Neural Network–LSTM 
(CNN-LSTM) models accounted for 18% of the studies under analysis. They have been 
favoured due to their ability to capture spatial and temporal data properties and enhance 
forecast precision in advanced energy systems. While primarily designed for identifying the 
spatial pattern, simple CNN models were utilized to the tune of 12% of the studies, often 
coupled with feature extraction operations within multivariate prediction programs. 

Despite the rise of deep learning techniques, conventional machine learning models 
such as Support Vector Machines (SVM) and Random Forests continue to hold relevance, 
especially in contexts where data availability is limited or model interpretability is 
paramount. These traditional methods are particularly favoured in use cases involving 
smaller datasets or decision-critical environments where transparency and explainability 
are essential. The continued application of such models highlights the practical importance 
of balancing predictive accuracy with computational efficiency and interpretability in 
energy forecasting research. 
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Fig. 5. Distribution of machine learning techniques in reviewed studies 

 

Recent developments in energy forecasting studies exemplify the supremacy of deep 
learning methodologies, where about 73% of the work applied such approaches, of which 
Long Short-Term Memory (LSTM) networks are most renowned for their capacity to 
manage temporal sequence data. There is also an emerging trend towards more hybrid 
model development. CNN-LSTM models are higher at 25% in 2024 compared to 8% in 2020, 
reflecting the integration of spatial and temporal modelling capacity for better predictive 
performance. Also, there are breakthroughs like transformer models and Graph Neural 
Networks (GNNs); transformers now take up 6% of the research and have grown an 
incredible 300% from 2022 to 2024 because they do very well with sequence modelling. At 
the same time, GNNs, cited in only 3% of the literature currently, are promising for network-
aware prediction and a step towards higher-order and adaptive neural configurations in 
energy science. 
 
3.1.2 Application domain analysis 

 
Table 1. Distribution of studies by application domain 

Application Domain Number of 
Studies 

Percentage Predominant Techniques 

Short-term Load Forecasting 66 42% LSTM, CNN-LSTM, Transformer 
Building Energy Prediction 36 23% LSTM, CNN, Random Forest 
Mart Grid Operations 28 18% CNN-LSTM, Transformer, GNN 
Renewable Energy Forecasting 27 17% GNN, LSTM, Ensemble 

 
Given the fields of application, short-term load forecasting (STLF) is the most studied 

field, with 42% of the papers under review. Such a high focus highlights STLF's importance 
in grid stability, demand-side management, and operation planning of modern power 
systems. Its popularity is perhaps because of growing recognition of the importance of 
accurate near-real-time demand forecasts to enable dynamic demand profiles and growing 
uses of intermittent renewable energy sources. Its second most discussed theme in order of 
frequency is building energy prediction at scale, at 23% of the research. It justifies growing 
academic and practical attention to enabling energy efficiency and demand optimisation at 
scale at the micro-level for residential, commercial, and institutional buildings. This aligns 
with master sustainability agendas and the shift to smart building technologies. 

At 18% of the studies, forecasts of renewable energy are intended to make more 
accurate predictions of solar and wind energy. Also, naturally fluctuating and non-repeating 
energy sources. Integrating renewables onto the grid and reducing reliance on fossil-fuel-
generated electricity is more important. Finally, intelligent grid operation accounts for 17% 
of the literature. It is concerned with attempts to utilise advanced forecasting methods to 
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maximise grid flexibility, decentralised control, and real-time energy supply. These 
statistics, presented in Table 1, not only describe the overall contribution of STLF in existing 
research but also the augmented focus towards decentralised and sustainability-based 
energy management techniques in various application domains. 
 
3.1.3 Performance analysis and benchmarking 
 

Variation in predictive precision between studies considered here mirrors 
considerable divergence, most of which can be attributed to the selection of approach to 
modelling and the particular application domain in which it is used. For short-term load 
forecasting (STLF), which still tops the list of most studied application fields, the best-
performing models reproduce mean absolute percentage errors (MAPE) of less than 3% 
(see Figure 6). This precision is required to undertake grid reliability and optimal energy 
dispatch computations. 
 

 
Fig. 6. Average MAPE performance by technique category across application domains 

 
Among the methods studied, the hybrid deep learning models, i.e., Convolutional 

Neural Networks-Long Short-Term Memory Network (CNN-LSTM) hybrids, made more 
accurate predictions than standalone methods. The hybrid methods take advantage of both 
the spatial feature extraction capability of CNNs and the temporal sequence modelling 
capability of LSTMs to enable better control of the complex spatiotemporal dynamics in the 
energy demand data. The overall over-performance of CNN-LSTM hybrids underscores an 
increasing trend towards leveraging complementary deep learning methods to enhance 
prediction accuracy and robustness. Such a finding also underscores application-specific 
and data-specific model selection in realising the best performance results for various 
energy forecasting applications. 
 
3.1.3.1 Key performance insights 

 
Long Short-Term Memory (LSTM) networks perform exceptionally well across various 

forecasting classes, achieving mean absolute percentage errors (MAPE) ranging from 4.2% 
to 7.8%, particularly excelling in learning long-term temporal patterns. CNN-LSTM hybrid 
models also demonstrate outstanding performance, with MAPE between 3.1% and 6.2%, 
especially in handling complex spatial-temporal data patterns. Transformer models are 
highly effective in long-sequence prediction tasks, delivering MAPE values between 3.8% 
and 5.9%; however, they require significantly high computational resources, which can be 
a limiting factor. On the other hand, traditional machine learning methods, while delivering 
slightly less accurate forecasts (MAPE: 5.1%–9.3%), are advantageous for less 
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computationally demanding tasks and offer greater model explainability, making them 
suitable for scenarios where interpretability and efficiency are prioritized. 
 
3.1.3.2 Dataset size impact 

 
Analysis shows the advantages of deep learning for data from more than 10,000 

samples. With small data sets (<5,000 samples), standard ML methods will likely compare 
or surpass performance at a much lower computational cost.  
 
3.1.4 Data pre-processing and feature engineering trends 

 
Good data pre-processing is a key success factor for all the studies under review. The 

most frequently used pre-processing methods are normalization (94% of the studies), 
detection and deletion of outliers (78%), imputation of missing values (67%), and feature 
scaling (89%). The evolution of feature engineering has shown increased sophistication 
over time. Approximately 68% of the studies incorporated weather-related features, while 
45% utilized calendar or temporal variables. Economic indicators were included in 32% of 
the studies, and 23% considered social or behavioral features. Moreover, advanced feature 
selection techniques, such as mutual information and correlation analysis, were applied in 
56% of the reviewed literature to enhance model input relevance and improve forecasting 
performance. Automated feature engineering is also emerging as a notable trend, 
particularly in papers published between 2023 and 2024. Around 18% of these studies 
employed automation techniques such as genetic algorithms and neural architecture 
search, signaling a shift toward reducing manual effort and increasing efficiency in the 
model development process. 
 
3.1.5 Evaluation metrics and validation approaches 

 
The study mentions standardization across the evaluation measures, where MAPE 

(89% of articles), RMSE (78%), and MAE (72%) are most frequently reported. However, 
measures specific to the domain are used more often nowadays, such as ramp rate accuracy 
in renewable forecasting and peak demand accuracy for load forecasting. Regarding 
validation techniques, 67% of the studies utilize time series cross-validation, indicating a 
stronger emphasis on preserving temporal relationships during model evaluation. 
Nevertheless, 23% of the studies still apply random train-test splits, which may lead to 
overly optimistic and less reliable performance estimates due to their disregard for time 
dependencies inherent in energy data. 
 
3.1.6 Emerging technologies and innovation trends 

 
Explainable AI (XAI) techniques are increasingly integrated into energy forecasting 

models, with 31% of 2024 studies incorporating some form of interpretability analysis. 
SHAP values and attention visualization are the most commonly used approaches, 
addressing critical needs for model transparency in operational environments. While still 
emerging, federated learning has been applied in 7% of studies and shows significant 
promise for privacy-preserving energy forecasting across multiple stakeholders. Early 
results demonstrate comparable performance to centralized approaches while ensuring 
data privacy. The integration of physical constraints and domain knowledge—commonly 
referred to as physics-informed models—is observed in 12% of recent studies. These 
models exhibit improved robustness and generalization, particularly in applications related 
to building energy modelling. Meanwhile, quantum machine learning is at a nascent stage, 
with 3% of the studies exploring its use. These primarily focus on optimization problems 
and indicate strong potential for future computational advantages in energy forecasting. 
3.2 Discussion 
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3.2.1 Key findings and implications 
 
This study's findings produced several critical insights with meaningful research and 

practical implications for the application of machine learning in energy forecasting. First, 
deep learning maturity is evident in the large-scale adoption of LSTM and CNN-LSTM hybrid 
models, marking a transition from experimental deployment to mature, deployable 
technologies. Their increasing prevalence reflects not only their predictive power but also 
their flexibility in addressing complex forecasting tasks. However, this advancement comes 
with the trade-off of higher model complexity and computational costs, which may pose 
challenges in resource-constrained settings. These results align with the work of Aalami et 
al. (2020) and Ayesha et al. (2025), who demonstrated that CNN–LSTM hybrids consistently 
outperformed standalone models in predicting environmental indicators such as dissolved 
oxygen (DO) and chlorophyll-a (Chl-a), reaffirming the superior predictability of hybrid 
neural models. 

Second, performance remains highly context-dependent. No single algorithm performs 
optimally across all datasets and forecasting scenarios. Factors such as dataset size, 
temporal granularity, forecasting horizon, and application domain significantly affect model 
performance. This reinforces the importance of selecting forecasting methods based on 
specific application needs rather than relying on general trends or algorithm popularity. 
Finally, the quality of data emerges as the most consistent determinant of success. Across 
all reviewed studies, high-quality data and sophisticated pre-processing techniques had a 
more significant impact on model accuracy than the specific ML algorithm employed. 
Properly designed data pipelines—including cleaning, normalization, and feature 
engineering—consistently led to better forecasting outcomes. This finding echoes the 
conclusions of Pandey and Kale (2024), who found that robust data preparation often had 
a greater influence on prediction quality than the choice of learning model itself. 
 
3.2.2 Persistent challenges and limitations 
 

The study identified several critical challenges that have important implications for 
both research and practical applications in energy forecasting: First, there exists a notable 
trade-off between performance and interpretability. While deep learning models generally 
yield higher prediction accuracy, their characterization as “black boxes” poses significant 
challenges for mission-critical applications where transparency, explainability, and 
regulatory compliance are essential. This trade-off is especially problematic in contexts 
where model reasoning must be clearly understood to ensure safety and accountability. The 
findings echo those of Zhang and Zhu (2018), Liu et al. (2021), and Yang and Xu (2024), 
underscoring the necessity for models that strike a balance between high performance and 
interpretability in sensitive forecasting scenarios. 

Second, the issue of generalization remains a major concern. Although many 
experiments demonstrate excellent performance on the training datasets, their inability to 
generalize to different situations—such as varying times of the year, diverse geographies, 
or other external conditions—significantly reduces their practical applicability. 
Wickramarachchi et al. (2023) have highlighted this problem as a key barrier to the 
successful field deployment of these models, emphasizing the need for adaptable 
approaches in large-scale implementations. Third, despite advances in average forecasting 
accuracy, current methods are largely inadequate at predicting rare events, such as extreme 
weather conditions, sudden spikes in electricity load, or abrupt demand fluctuations. This 
limitation is especially critical for grid stability and emergency response applications, as 
demonstrated in the work of Lusa and Blagus (2017) and Wickramarachchi et al. (2023). 

Fourth, both deep and shallow learning models, despite their robust predictive 
capabilities, often suffer from high computational costs. This limitation renders them less 
suitable for real-time applications, particularly in environments with limited computing 
resources. Lusa and Blagus (2017) and Zhao et al. (2025) have noted that this computational 
burden is a significant drawback for distributed or low-resource systems. Finally, data 
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privacy and security remain underexplored yet crucial issues. The use of personal and 
otherwise sensitive consumption information in advanced forecasting models raises 
significant privacy concerns. In the current body of literature, less than 12% of the studies 
address privacy issues in any detail, indicating a substantial gap. Researchers such as Lusa 
and Blagus (2017), Juwara et al. (2023), and Zhao et al. (2025) have underscored the 
importance of incorporating robust data protection and ethical considerations in model 
development. 
 
3.2.3 Methodological principles and best practices 
 

The findings also highlight several key methodological insights that shape the direction 
of future research. First, the improved performance of hybrid models—particularly CNN-
LSTM ensembles—demonstrates the strength of combining multiple complementary 
techniques. These ensembles consistently outperform single-model approaches, confirming 
the strategic value of ensemble and multi-model frameworks in energy forecasting 
applications. Second, the significance of feature engineering cannot be overstated. Studies 
that employ advanced feature engineering techniques consistently outperform those 
relying solely on raw temporal data. The integration of diverse features such as weather, 
calendar-based variables, economic indicators, and behavioral patterns significantly 
enhances model performance by providing richer contextual understanding for prediction 
tasks. Lastly, the review underscores notable inconsistencies in validation methodology 
across the literature. Many studies apply inappropriate cross-validation strategies for time 
series data, such as random splits, which risk inflating performance metrics. The adoption 
of proper temporal validation techniques is essential to ensure realistic and reliable 
evaluation of forecasting models. 
 
3.2.4 Emerging opportunities anad future directions 
 

The future trajectory of machine learning in energy forecasting involves several 
cutting-edge directions with high transformative potential. First, the integration of 
Explainable AI (XAI) techniques marks a critical advancement. The state-of-the-art 
application of XAI now offers models that achieve peer-level performance while meeting 
essential interpretability standards. However, there remains a pressing need to develop 
explainability frameworks specifically tailored to the operational and regulatory contexts 
of power systems. Secondly, multi-modal data fusion is poised to significantly enhance 
forecasting accuracy. The blending of diverse data sources—such as satellite imagery, 
economic indicators, IoT sensor data, and even social media sentiment—can offer richer 
insights and enable real-time, context-aware predictions. 

Third, the integration of edge computing presents a promising solution for distributed 
energy systems. Deploying lightweight, efficient models at the network edge allows for real-
time forecasting while addressing crucial issues of latency, data privacy, and bandwidth 
constraints. Lastly, quantum-enhanced algorithms are emerging as a potential 
breakthrough in solving complex energy forecasting challenges. Although still in early 
development, quantum machine learning shows promise in tackling large-scale, multi-
objective, and constraint-heavy optimization problems that are otherwise computationally 
prohibitive using classical methods. 
 
3.2.5 Key implications and limitations of the systematic review on machine learning 
applications in energy forecasting 
 

Future practical implementation of machine learning in energy forecasting will require 
strategic operational planning and cross-sector collaboration. One key approach is the 
incremental deployment strategy, which involves the gradual integration of ML models into 
existing forecasting infrastructure. This method allows for real-world validation, model 
calibration, and risk minimization before full-scale adoption. Hybrid techniques that blend 
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traditional statistical methods with ML during transitional phases have shown promise in 
easing this process. 

Equally important is the development of continuous learning systems. Given the 
dynamic and evolving nature of energy systems, models must be capable of adapting to 
changing patterns in data. Techniques such as transfer learning and online learning offer 
pathways for such adaptability. However, these must be applied carefully to maintain model 
integrity and avoid degradation over time due to concept drift or poor retraining practices. 
Lastly, collaborative stakeholder engagement is essential for successful deployment. 
Seamless cooperation among ML researchers, domain experts, utility companies, and 
regulatory bodies ensures that developed models meet operational needs, adhere to 
compliance requirements, and are practically viable for real-world application. This 
integrated approach bridges technical innovation with policy and operational realities. 
 
3.2.6 Limitations of this review 

 
Although this review offers valuable insights into the application of machine learning 

methods for energy prediction, several limitations should be acknowledged when 
interpreting its findings. First, the restriction to English-language publications may have 
introduced language bias, potentially overlooking significant research published in other 
languages. Second, publication bias remains a concern, as studies reporting positive or 
significant results are more likely to be published, which could lead to an overestimation of 
model performance across the literature. 

Additionally, given the rapid evolution of this field, even a review spanning from 2020 
to mid-2025 may not fully capture the most recent innovations or emerging next-generation 
tools. The high methodological heterogeneity—including differences in datasets, 
application domains, and performance evaluation metrics—further complicates direct 
comparisons between studies and limits the ability to draw universal conclusions. Lastly, 
the review does not encompass proprietary or confidential industrial applications, which 
are often unpublished. These implementations could offer critical insights into real-world 
scalability, operationalization, and practical deployment challenges, but remain 
inaccessible for academic synthesis. 

 

4. Conclusions 
 

From the foregoing, this systematic review confirms that machine learning (ML) and 
deep learning (DL) methodologies have transformed energy forecasting on a broad scale 
from being largely experimental setups to operational deployment in mission-critical 
settings. Comparative performance metrics throughout the literature reviewed invariably 
show that DL models like LSTM, CNN-LSTM, and Transformer architectures surpass 
conventional forecasting accuracy, temporal resolution, and scalability measures. 
Nevertheless, collating the findings by theme reveals repeated concerns over the 
interpretability of the models, generalisability over wide geography and seasons, and 
computational tractability for low-resource or real-time deployment. Addressing these 
challenges is not only a matter of algorithmic innovation; it involves strong frameworks that 
gain trust, increase transparency, and are applicable in practice. A cross-disciplinary 
interdisciplinary effort among researchers, industry actors, policymakers, and end-users is 
needed to align technological possibilities with genuine needs. The growing need for 
trustful forecasting, especially with consideration of global electrification and renewable 
energy integration, makes such alignment more urgent. Future research should prioritise 
the development of sustainability-aware models, causal inference techniques, and 
adaptable forecasting frameworks that integrate cross-domain transfer learning. Moreover, 
the convergence of 5G/6G technologies, quantum computing, and edge AI holds promise for 
achieving real-time, scalable, and decentralised energy forecasting. Human-AI collaboration 
must also be central, promoting transparency and ethical decision-making in energy 
management. Collectively, these strategies form a forward-looking roadmap for enhancing 
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forecasting systems that are intelligent and efficient but also resilient, equitable, and 
sustainable. 

To researchers, some best practices in methodology can enhance follow-up energy 
forecasting research through improved robustness and effectiveness. One applies 
systematic validation techniques, especially cross-validation from time series, which is 
important in identifying temporal dependency in energy data. To enable generalizability, 
researchers must validate models using different datasets, time horizons, and geographic 
locations. Interpretability may be incorporated at the beginning of model building for model 
output transparency. Universal benchmarking datasets and evaluation metrics must also 
establish fair and informative performance comparisons across studies. Finally, researchers 
must actively incorporate data privacy and security-related concerns into research design 
about the ethical and legal considerations of utilizing data for energy. On the other hand, to 
the actual practitioners who are engaged in deploying machine learning models, model 
selection based on context is of top priority. Rather than working with cool models in bulk, 
practitioners must be prepared to accept model selection based on their environment's 
unique requirements and needs. Strong pre-processing pipelines and high-quality data 
should also be important since they are the primary drivers of model validity. Progressive 
deployment strategies whereby models are extensively tested before widespread 
deployment successfully nip the threat in the bud and allow level performance to become 
accessible. Frequent monitoring and occasional re-estimation of the models are necessary 
to support adapting conditions and forecasting validity. Close coordination among machine 
learning specialists and domain subject-matter experts will also fill knowledge gaps and 
provide stronger, more applied, interpretable prediction tools.
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