Safe breath: A concept for air quality monitoring app using internet of things and early detection to support Tuberculosis elimination by 2030

Authors

  • Ahmad Rizki Munandar Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Bandar Lampung, 35145, Indonesia
  • Fatur Rozak Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Bandar Lampung, 35145, Indonesia
  • Agustino Simatupang Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Bandar Lampung, 35145, Indonesia
  • Dian Kurniasari Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Bandar Lampung, 35145, Indonesia

DOI:

https://doi.org/10.61511/jevnah.v2i1.2025.1710

Keywords:

air quality, early detection, internet of things, tuberculosis

Abstract

Background: Tuberculosis (TB) remains a significant global health challenge, particularly in countries with poor air quality and high population density. Delayed diagnosis and environmental factors, such as air pollution, contribute to the high prevalence and mortality rates associated with this disease despite advancements in treatment and prevention. A review of the literature highlights a significant association between long-term exposure to air pollutants, such as delicate particulate matter ( ) and an increased risk of TB. Internet of Things (IoT) technology, which integrates real-time environmental sensors with analytical algorithms, offers the potential to support TB prevention through data-driven and modern technological approaches. This study aims to design a conceptual framework based on IoT technology to enhance early TB detection through air quality monitoring. Methods: A literature review was conducted from 2020 to 2025, focusing on designing the Safe Breath conceptual framework. Relevant articles were retrieved from databases including PubMed, ScienceDirect, and Google Scholar, filtered by inclusion criteria and full-text availability. Data were synthesized to explore the relationship between air quality and TB incidence. Findings Poor air quality is closely linked to TB risk, making environmental monitoring essential in disease control. IoT technology can collect real-time data through air quality sensors, monitoring environmental risk factors continuously. The Safe Breath application concept integrates air sensors with early detection features to improve TB screening accuracy while encouraging community participation in disease prevention efforts. Conclusion: The proposed Safe Breath application combines IoT technology with air quality monitoring and early detection systems, improving screening accuracy and proactive TB control through a community-based approach. Novelty/Originality of this article: This study presents a novel approach by integrating IoT technology and environmental monitoring for TB control. The combined use of air sensors and early detection tools offers a scalable, data-driven solution for global TB prevention.

References

Adewole, K. S., Mojeed, H. A., Ogunmodede, J. A., Gabralla, L. A., Faruk, N., Abdulkarim, A., Ifada, E., Falowiyo, Y. Y., Oloyede, A. A., Olawoyin L. A., Sikiru, I. A., Nehemiah, M., Gital, A. Y., & Chiroma, H. (2022). Expert System and Decision Support System for Electrocardiogram Interpretation and Diagnosis: Review, Challenges and Research Directions. Applied Sciences, 12(23), 12342. https://doi.org/10.3390/app122312342

Ajagbe, S. A., Mudali, P., & Adigun, M. O. (2024). Internet of Things with deep learning techniques for pandemic detection: A comprehensive review of current trends and open issues. Electronics, 13(2630), 1–27. https://doi.org/10.3390/electronics13132630

Akbar, H., Fauzan, M. R., Langingi, A. R. C., & Darmin, D. (2021). Pendidikan Kesehatan Dalam Peningkatan Pengetahuan Penderita Tuberkulosis Di Wilayah Kerja Puskesmas Mopuya: Health Education in Improving the Knowledge of Patient with Tuberculosis in the Working Area of Mopuya Health Center. Jurnal Ilmu Dan Teknologi Kesehatan Terpadu, 1(1), 38–44. https://doi.org/10.53579/jitkt.v1i1.3

Bolhasani, H., Mohseni, M., & Rahmani, A. M. (2021). Deep learning applications for IoT in health care: A systematic review. Informatics in Medicine Unlocked, 23, 100550. https://doi.org/10.1016/j.imu.2021.100550

Buelvas, J., Múnera, D., Tobón V, D. P., Aguirre, J., & Gaviria, N. (2023). Data quality in IoT-based air quality monitoring systems: a systematic mapping study. Water, Air, & Soil Pollution, 234(4), 248. https://doi.org/10.1007/s11270-023-06127-9

Carrasco-Escobar, G., Schwalb, A., Tello-Lizarraga, K., Vega-Guerovich, P., & Ugarte-Gil, C. (2020). Spatio-temporal co-occurrence of hotspots of tuberculosis, poverty and air pollution in Lima, Peru. Infectious Diseases of Poverty, 9(2), 84-89. https://doi.org/10.1186/s40249-020-00647-w

Chakaya, J., Khan, M., Ntoumi, F., Aklillu, E., Fatima, R., Mwaba, P., Kapata, N., Mfinanga S., Hasnain, S. E., Katoto, P. D.M.C., Bulabula, A. N.H., Sam-Agudu, N. A., Nachega, J. B., Tiberi, S., McHugh, T. D., Abubakar, I., & Zumla, A. (2021). Global Tuberculosis Report 2020–Reflections on the Global TB burden, treatment and prevention efforts. International journal of infectious diseases, 113, 7-12. https://doi.org/10.1016/j.ijid.2021.02.107

Chen, J., Liu, L., Huang, J., Jiang, Y., Yin, C., Zhang, L., Li, Z., & Lu, H. (2024). LSTM-based prediction model for tuberculosis among HIV-infected patients using structured electronic medical records: A retrospective machine learning study. Journal of Multidisciplinary Healthcare, 17, 3557-3573. https://doi.org/10.2147/JMDH.S467877

Dewi, A. C., Adi, K., & Martini. (2024). Expert system design for early detection of tuberculosis disease (Case study at Demak District Health Office). East Asian Journal of Multidisciplinary Research, 3(7), 2571–2580. https://doi.org/10.55927/eajmr.v3i7.9675

Dimala, C. A., & Kadia, B. M. (2022). A systematic review and meta-analysis on the association between ambient air pollution and pulmonary tuberculosis. Scientific reports, 12(1), 11282. https://doi.org/10.1038/s41598-022-15443-9

Erwin, D. A. L., Nurohim, S. W., Adhicandra, I., Budihartono, E., & Purnawati, N. W. (2023). Pengantar dan Penerapan Internet of Things: Konsep Dasar dan Penerapan IoT di berbagai sektor. Sonpedia Publisher Indonesia.

Farhana, F., Nurwahyuni, A., & Alatas, S. S. (2022). Pemanfaatan Digital Health untuk Meningkatkan Keberhasilan Pengobatan Pasien Tuberkulosis di Negara Berkembang: Literature Review. Media Publikasi Promosi Kesehatan Indonesia, 5(9), 1043-1053. https://doi.org/10.56338/mppki.v5i9.2542

Findi, M., & Juan, A. (2020). Dampak Polusi Udara pada Meningkatnya Penderita Tuberkulosis. Yayasan KNCV Indonesia.

Florencia, L. (2023). Aplikasi User-Friendly, Apa Sebenarnya Maksudnya? Nextlivin.

Hernandez-Ramos, R., Aguilera, A., Garcia, F., Miramontes-Gomez, J., Pathak, L. E., Figueroa, C. A., & Lyles, C. R. (2021). Conducting internet-based visits for onboarding populations with limited digital literacy to an mhealth intervention: development of a patient-centered approach. JMIR formative Research, 5(4), e25299. https://doi.org/10.2196/25299

Htet, K. K. K., Phyu, A. N., Zayar, N. N., & Chongsuvivatwong, V. (2023). Active Tuberculosis Screening via a Mobile Health App in Myanmar: Incremental Cost-Effectiveness Evaluation. JMIR Formative Research, 7(1), e51998. https://doi.org/10.2196/51998

Jabbar, W. A., Subramaniam, T., Ong, A. E., Shu'Ib, M. I., Wu, W., & De Oliveira, M. A. (2022). LoRaWAN-based IoT system implementation for long-range outdoor air quality monitoring. Internet of Things, 19, 100540. https://doi.org/10.1016/j.iot.2022.100540

Karmani, P., Chandio, A. A., Korejo, I. A., Samuel, O. W., & Aborokbah, M. (2024). Machine learning based tuberculosis (ML-TB) health predictor model: early TB health disease prediction with ML models for prevention in developing countries. PeerJ Computer Science, 10, e2397. https://doi.org/10.7717/peerj-cs.2397

Khambali, R., Mulsiswanto, S., & Auliah, H. A. P. (2024). Cyclone Ventilator Modification: An Environmentally Friendly Solution for the Homes of Patients With Tuberculosis and Acute Respiratory Infections. Journal of Engineering, 24(1), 2634231. https://doi.org/10.1155/2024/2634231

Khan, M. A., Bilal, W., Asim, H., Rahmat, Z. S., Essar, M. Y., & Ahmad, S. (2022). MDR-TB in Pakistan: Challenges, efforts, and recommendations. Annals of Medicine and Surgery, 79, 104009. https://doi.org/10.1016/j.amsu.2022.104009.

Kirana, N. (2024). Mengenal Monitoring Lingkungan dan Sistem Pemantauan dengan IoT. Synapsis.id.

Li, Z., Liu, Q., Chen, L., Zhou, L., Qi, W., Wang, C., Zhang, Y., Tao, B., Zhu, L., Martinez, L., Lu, W., & Wang, J. (2024). Ambient air pollution contributed to pulmonary tuberculosis in China. Emerging Microbes & Infections, 13(1), 2399275. https://doi.org/10.1080/22221751.2024.2399

Martiningrum, R., Astari, J. D., Maqfiroh, A., A’yun, N. Z. Q., Nada, D. T. R. Q., Sya’idah, Q., Amalia, N. A., & Latifah, D. (2024). IoT Enhanced Electronic-Nose sebagai Sistem Deteksi Cepat Tuberculosis Berbasis Embedded System untuk Penderita Tuberculosis. Scientica: Jurnal Ilmiah Sains Dan Teknologi, 3(2), 98–102. https://jurnal.kolibi.org/index.php/scientica/article/view/4157

Marwah, M., Rekawati, E., Nursasi, A. Y., & Sari, I. P. (2024). Edukasi Kesehatan Memengaruhi Perilaku Pencegahan Penularan Tuberkulosis: A Systematic Review. Jurnal Riset Kesehatan Poltekes DEPKES Bandung, 16(2), 365-374. https://doi.org/10.34011/juriskesbdg.v16i2.2534

Mishra, S., Kumar, R., Tiwari, S. K., & Ranjan, P. (2022). Machine learning approaches in the diagnosis of infectious diseases: a review. Bulletin of Electrical Engineering and Informatics, 11(6), 3509-3520. https://doi.org/10.11591/eei.v11i6.4225

Mohammed, B. G., & Hasan, D. S. (2023). Smart Healthcare Monitoring System Using IoT. Int. J. Interact. Mob. Technol., 17(1), 141-152. https://doi.org/10.3991/ijim.v17i01.34675

Mudzengi, D. L., Chomutare, H., Nagudi, J., Ntshiqa, T., Davis, J. L., Charalambous, S., & Velen, K. (2024). Using mHealth Technologies for Case Finding in Tuberculosis and Other Infectious Diseases in Africa: Systematic Review. JMIR mHealth and uHealth, 12, e53211. https://doi.org/10.2196/53211

Narayana, M. V., Jalihal, D., & Nagendra, S. S. (2022). Establishing a sustainable low-cost air quality monitoring setup: A survey of the state-of-the-art. Sensors, 22(1), 394. https://doi.org/10.3390/s22010394

Orgeur, M., Sous, C., Madacki, J., & Brosch, R. (2024). Evolution and emergence of Mycobacterium tuberculosis. FEMS Microbiology Reviews, 48(2), fuae006. https://doi.org/10.1093/femsre/fuae006

Orjuela-Cañón, A. D., Jutinico, A. L., Awad, C., Vergara, E., & Palencia, A. (2022). Machine learning in the loop for tuberculosis diagnosis support. Frontiers in Public Health, 10, 876949. https://doi.org/10.3389/fpubh.2022.876949

Osei, E., & Mashamba-Thompson, T. P. (2021). Mobile health applications for disease screening and treatment support in low-and middle-income countries: A narrative review. Heliyon, 7(3). https://doi.org/10.1016/j.heliyon.2021.e06639

Pramono, J. S., Hendriani, D., Ardyanti, D., & Chifdillah, N. A. (2023). Implementation of an mHealth-based Suspected Tuberculosis Early Detection Application among HouseholdContacts:a Systematic Review. Jurnal Kesehatan Vokasional, 8(3). https://doi.org/10.22146/jkesvo.83119.

Rahayu, S. R., Cahyati, W. H., Zainafree, I., Farida, E., Merzistya, A. N. A., Aulia, A., Wahidah, N., Wandastuti, A. D., Isbandi, I., Setiawan, A. W., Atmini, T., Islam, M. A. N., Fajri, A., Mubarok, M., Ningsih, F., & Subagja, M. (2022). Development of the SIKRIBO Mobile Health Application for Active Tuberculosis Case Detection in Semarang, Indonesia. Healthcare Informatics Research, 28(4), 297-306. https://doi.org/10.4258/hir.2022.28.4.297

Rahma, S. N., Ariyati, R., Nabila, F. A., & Rakhmawulan, D. A. (2024). Capai Eliminasi TBC dengan Semarak Gerakan Indonesia Akhiri Tuberkulosis (GIAT). Kementerian Kesehatan Republik Indonesia.

Rahman, M. S., Safa, N. T., Sultana, S., Salam, S., Karamehic-Muratovic, A., & Overgaard, H. J. (2022). Role of artificial intelligence-internet of things (AI-IoT) based emerging technologies in the public health response to infectious diseases in Bangladesh. Parasite Epidemiology and Conrol, 18, e00266. https://doi.org/10.1016/j.parepi.2022.e00266

Sari, R. P. (2024). 10 Penerapan Internet of Things di Bidang Kesehatan. Cloud Computing Indonesia.

Sawitri, D. (2023). Internet of Things Memasuki Era Society 5.0. KITEKTRO: Jurnal Komputer, Informasi Teknologi, dan Elektro, 8(1), 31-35. https://doi.org/10.24815/kitektro.v8i1.28578

Singh, M., Pujar, G. V., Kumar, S. A., Bhagyalalitha, M., Akshatha, H. S., Abuhaija, B., Alsoud, A. R., Abualigah, L., Beeraka, N. M., & Gandomi, A. H. (2022). Evolution of machine learning in tuberculosis diagnosis: a review of deep learning-based medical applications. Electronics, 11(17), 2634. https://doi.org/10.3390/electronics11172634

Stop TB Partnership ID. (2023). Cara mencegah TBC di Indonesia. Stop TB Partnership ID.

Suyanto, S., Aulia, S., Ramli, E., & Chandra, F. (2023). Hubungan kadar polusi udara dengan kejadian Tuberkulosis di Kota Pekanbaru tahun 2015 sampai dengan 2020. Jurnal Ilmu Kedokteran (Journal of Medical Science), 17(1), 46-52. https://doi.org/10.26891/JIK.v17i1.2023

Syadzali, A. F. (2024). Deteksi dini dan pencegahan TBC. Riset dan Studi Asia Universitas Gadjah Mada.

Tarmizi, S. N. (2024). Kasus TBC Tinggi karena Perbaikan Sistem Deteksi dan Pelaporan. Sehat Negeriku.

TB Indonesia. (2023). Komitmen kolaborasi eliminasi TBC. Kemenaker, Unilever, USAID.

Tumuhimbise, W., & Musiimenta, A. (2021). A review of mobile health interventions for public private mix in tuberculosis care. Internet interventions, 25, 100417. https://doi.org/10.1016/j.invent.2021.100417

Wang, L., Xu, C., Hu, M., Qiao, J., Chen, W., Li, T., Qian, S., & Yan, M. (2021). Spatio-temporal variation in tuberculosis incidence and risk factors for the disease in a region of unbalanced socio-economic development. BMC Public Health, 21, 1-11. https://doi.org/10.1186/s12889-021-11833-2

Wang, Y., Gao, C., Zhao, T., Jiao, H., Liao, Y., Hu, Z., & Wang, L. (2023). A comparative study of three models to analyze the impact of air pollutants on the number of pulmonary tuberculosis cases in Urumqi, Xinjiang. PloS one, 18(1), e0277314. https://doi.org/10.1371/journal.pone.0277314

WHO. (2021). WHO operational handbook on tuberculosis: module 2: screening: systematic screening for tuberculosis disease. World Health Organization.

WHO. (2022). Fact sheets: Tuberculosis Day 2022. World Health Organization

WHO. (2023a). Global tuberculosis report 2023. World Health Organization.

WHO. (2023b). WHO Ambient Air Quality Database, 2022. World Health Organization.

WHO. (2024). Global tuberculosis report 2024.

Yang, J., Zhang, M., Chen, Y., Ma, L., Yadikaer, R., Lu, Y., Lou, P., Pu, Y., Xiang, R., & Rui, B. (2020). A study on the relationship between air pollution and pulmonary tuberculosis based on the general additive model in Wulumuqi, China. International Journal of Infectious Diseases, 96, 42–47. https://doi.org/10.1016/j.ijid.2020.03.032

Yayan, J., Franke, K., Berger, M., Windisch, W., & Rasche, K. (2024). Early Detection of Tuberculosis: A Systematic Review. Pneumonia, 16(11). https://doi.org/10.1186/s41479-024-00133-z.

Downloads

Published

2025-02-28

Issue

Section

Articles

Citation Check