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ABSTRACT  
Introduction: Urban agriculture in Indonesia faces critical challenges including agricultural land conversion, 
aging farmer workforce (39% over 55 years, only 21% millennials), and rural urban inequality. While deep 
learning technologies prove effective for agricultural optimization, Indonesia lags neighboring countries due to 
regulatory ambiguity, limited incentives, and low youth participation. This study develops Urfalogy, an artificial 
intelligence powered platform addressing three primary urban farming constraints: limited space, insufficient 
capital, and inadequate technology. Methods: This research employed Agile software development 
methodology integrated with deep learning. The You Only Look Once version 8 (YOLOv8) algorithm was utilized 
for environmental object detection and segmentation. Dataset preprocessing included multiple augmentation 
techniques: scaling, geometric transformation, brightness adjustment, contrast and color saturation 
modifications. The platform integrates nine features: artificial intelligence layout designer, plant variety 
recommender, plant health detection, soil monitoring with internet of things sensors, e-commerce, real time 
expert consultation, appointment scheduling, interactive tutorials, and analytics dashboard.  Finding: Model 
training achieved optimal performance metrics at epoch 100: segment loss of 0.56756, recall of 90.01%, and 
mean Average Precision at intersection over union 0.50 (mAP50) of 90.715%. During inference, the model 
successfully identified environmental components (ceiling, wall, floor), enabling precise spatial mapping for 
garden layout design. The integrated platform demonstrates comprehensive end to end capability supporting 
complete urban farming workflow from planning through sales. Conclusion: Urfalogy represents a 
transformative solution effectively bridging Indonesia's urban agriculture gap through artificial intelligence, 
Internet of Things integration, and human centered design, significantly advancing sustainability, food security, 
and economic opportunities. Novelty/Originality of this article: This research uniquely combines deep 
learning-based spatial optimization with comprehensive platform ecosystem design, integrating YOLOv8 
environmental analysis with real-time consultation and e-commerce, addressing specific technological, 
economic, and accessibility barriers in Indonesian urban agriculture. 

 

KEYWORDS: agriculture; artificial intelligence; deep learning; environmental 
optimization; food security; platform design; sustainable urban; urban farming.  
 

 
1. Introduction  
 

The global urban population has reached unprecedented levels, with rapid 
urbanization creating significant challenges for food security, particularly in developing 
nations where agricultural systems remain heavily dependent on traditional rural farming 
practices. In Indonesia, despite being classified as an agricultural country with 73.14% of 
74,754 villages having agricultural typology, the nation paradoxically faces a critical 
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agricultural crisis characterized by severe structural imbalances between rural and urban 
agricultural productivity (Arham et al., 2019; Noor & Suwandana, 2024). The fundamental 
problem manifests in multiple dimensions. A dramatic decline in the farmer workforce has 
occurred, with approximately 39% of farmers exceeding 55 years of age while only 21% 
represent millennial farmers, indicating an aging agricultural labor force unable to sustain 
productivity (Arham et al., 2019). Furthermore, agricultural land conversion in peri-urban 
areas has accelerated significantly. The case of Colomadu in West Java exemplifies this 
trend, where 62.52 hectares of agricultural land were converted to non agricultural use 
between 2012 and 2017 (Tanjung et al., 2023; Pradana et al., 2021). This land use 
conversion has resulted in rural poverty rates of 9.75% compared to 7.52% in urban areas, 
creating substantial rural urban inequality and undermining regional economic 
development (Tanjung et al., 2023). 

The agricultural productivity gap between rural and urban areas has intensified due to 
Indonesia's technological and regulatory lag compared to neighboring Association of 
Southeast Asian Nations (ASEAN) countries. Singapore has established explicit regulatory 
frameworks and targeted 30% domestic food production selfsufficiency by 2030 through 
urban agriculture initiatives (Low, 2025). Thailand has implemented comprehensive 
irrigation canal systems since 2010 to enhance food autonomy. In contrast, Indonesia 
continues to operate under ambiguous regulations, minimal economic incentives, and 
limited institutional support for urban farming development (FHA Food & Beverage, 2023; 
Luftensteiner, 2023; Fauzia & Koestoer, 2024). This regulatory and institutional vacuum has 
resulted in critically low youth participation in agriculture. Only 23% of the 14.2 million 
young generation Indonesian workers engage in agricultural sectors, reflecting diminished 
interest in agricultural livelihoods and decreased capacity for agricultural sector renewal 
(Kianta, 2021). Failure to address this urban agriculture development challenge carries 
severe consequences. The nation faces accelerated agricultural land conversion, 
compromised national food security, loss of agricultural derived economic benefits, 
environmental degradation in urban areas, and decreased quality of urban life (Saputra et 
al., 2025). 

Urban farming has emerged globally as a pragmatic solution to address food security 
challenges in space constrained urban environments, offering multiple co benefits including 
local food production, ecosystem services, community engagement, and livelihood 
opportunities (Saputra et al., 2025). However, the widespread implementation of urban 
farming in Indonesia faces three interconnected primary constraints: spatial limitations, 
capital insufficiency, and technological inadequacy (Amri, 2024). Approximately 50% of 
urban farming practitioners in Indonesia operate on land areas smaller than 50 square 
meters, while only 13.73% possess land exceeding 500 square meters. Despite these 
limitations, 3,883.7 hectares of underutilized land exist in Pekanbaru and similar cities, yet 
they lack formal legal management frameworks (Amri, 2024). These spatial limitations are 
compounded by financial barriers. Insufficient initial capital prevents most prospective 
urban farmers from initiating productive activities. Additional technological barriers 
include inadequate access to precision agriculture technologies, pest detection systems, and 
farm management platforms (Parsudi, 2019; Amri, 2024). While vertical farming represents 
a technological solution to spatial constraints, its adoption remains limited due to high 
implementation costs and insufficient localized technical knowledge (Sari et al., 2024). 

Recent advances in deep learning and artificial intelligence have demonstrated 
transformative potential for agricultural optimization within space constrained 
environments (Zhou et al., 2025). The You Only Look Once version 8 (YOLOv8) algorithm 
has proven effective for real time object detection and segmentation tasks with superior 
performance compared to predecessor versions (Budde et al., 2024). In agricultural 
applications, YOLOv8 based systems have achieved notable performance. A smart 
greenhouse implementation utilizing YOLOv8 demonstrated enhanced monitoring and 
automated irrigation capabilities, resulting in superior production outcomes compared to 
conventional farming methods (Siswoyo et al., 2024). For pest detection in red chili pepper 
plants, YOLOv5 models achieved Mean Average Precision at 0.50 intersection over union 
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(mAP@0.5) of 81.3% with high-speed inference, enabling rapid pest identification critical 
for timely intervention (Agustian et al., 2023). Long Short-Term Memory (LSTM) neural 
networks have demonstrated superior forecasting capabilities for agricultural export 
prediction compared to traditional Seasonal Autoregressive Integrated Moving Average 
(SARIMA) models, with LSTM achieving substantially lower mean absolute percentage 
error (Kurnadipare et al., 2025). Furthermore, integrating machine learning and artificial 
intelligence systems has simplified food availability and quality control management in 
smart urban agriculture systems, such as those implemented in Makassar City (Pemerintah 
Kota Makassar, 2022). Transformative research combining human centered design 
principles, economically accessible sensors, and deep learning algorithms has opened 
opportunities for integrated urban farming coupled with renewable energy systems 
(Hakam, 2020). These technological developments demonstrate that deep learning 
frameworks possess substantial capacity to address urban farming's spatial and 
technological constraints through automated spatial optimization, real time health 
monitoring, and intelligent resource management. 

Despite these technological advances, a critical research gap persists. No 
comprehensive integrated platform currently exists that combines deep learning based 
spatial optimization with multi-functional support systems addressing the complete urban 
farming ecosystem. The ecosystem encompasses everything from initial design planning 
through production monitoring, expert consultation, and market linkage (Ventura & Silva e 
Meirelles, 2025). Existing urban farming initiatives in Indonesia typically address individual 
constraint dimensions such as capital or technology without providing holistic solutions 
that encompass design optimization, health monitoring, expert support, and market access 
simultaneously (Yurembam et al., 2025). This fragmentation reflects the absence of an 
integrated technology platform that bridges technological capabilities with human support 
systems and economic incentives, thereby limiting urban farming adoption among 
Indonesian urban communities (Arista et al., 2025). 

In response to these identified gaps, this research develops Urfalogy, an integrated 
artificial intelligence powered platform combining deep learning algorithms, Internet of 
Things (IoT) sensor technologies, e-commerce functionality, and human expert consultation 
systems to comprehensively address urban farming constraints in Indonesia. The platform 
leverages YOLOv8 deep learning architecture to automatically optimize garden layout 
design based on environmental conditions including light intensity, spatial configuration, 
and microclimatic factors. Additional features include plant variety recommendation 
systems, real time plant health detection, soil and media health monitoring via IoT sensors, 
e-commerce functionality connecting urban farmers with suppliers and consumers, real 
time expert consultation channels, appointment scheduling systems, interactive 
educational tutorials, and comprehensive analytics dashboards. This integrated approach 
directly addresses the identified technological, spatial, and economic constraints while 
supporting the achievement of Sustainable Development Goal 11.3, which emphasizes 
inclusive urbanization and participatory urban planning and management capacity.  

The primary objectives of this research are as follows. First, to design and develop an 
artificial intelligence powered platform addressing three primary urban farming 
constraints: spatial limitation, capital insufficiency, and technological inadequacy. Second, 
to implement deep learning-based spatial optimization for automatic garden layout design 
utilizing YOLOv8 architecture for environmental analysis. Third, to integrate multiple 
support systems including plant health detection, soil monitoring, expert consultation, e-
commerce, and educational content within a single cohesive platform ecosystem. Fourth, to 
evaluate the deep learning model's performance in detecting and segmenting suitable urban 
farming locations within constrained urban environments. Fifth, to demonstrate the 
platform's capacity to enhance urban farming adoption, productivity, and sustainability in 
Indonesian urban communities.  

This research represents a novel integration of deep learning based spatial 
optimization technology with comprehensive platform ecosystem design. The research 
combines environmental analysis capabilities with real time consultation, educational 
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support, and market linkage functionalities. This integrated approach has not been 
previously explored in the Indonesian urban agriculture context. The originality of this 
work lies in addressing the specific interconnected barriers to urban farming adoption 
through a unified technological and social support system. By doing so, this research 
positions itself at the intersection of technological innovation and socioeconomic 
development for sustainable urban food systems in Indonesia. 
 

2. Methods 
 

This research employs a mixed methods approach combining quantitative 
experimental design with qualitative evaluation to develop and validate Urfalogy, an 
integrated artificial intelligence powered platform for urban farming in Indonesia. The 
methodological framework integrates software engineering principles with deep learning 
model development. This integrated approach aligns with the research objective of creating 
a comprehensive platform that addresses technological, spatial, and economic barriers in 
urban farming contexts. 
 
2.1 Research design and location justification 

 
This research utilizes an applied technology development design focused on platform 

engineering and machine learning model implementation. The development process 
follows Agile Software Development Life Cycle (SDLC) methodology, which emphasizes 
iterative development, continuous testing, and rapid deployment cycles. This approach was 
selected because it enables flexible accommodation of changing requirements, maintains 
product quality through continuous evaluation, accelerates time to market with 
incremental delivery, and increases user satisfaction through intensive stakeholder 
engagement (Budi et al., 2016; Afandi et al., 2023). The selection of Agile SDLC reflects the 
ontological position that technology development is an iterative social and technical process 
requiring continuous feedback and refinement rather than a linear progression toward 
predetermined specifications. Epistemologically, this approach values empirical testing and 
user feedback as legitimate sources of knowledge alongside technical specifications and 
theoretical frameworks. 

The research integrates two primary technical components. First, software 
development utilizing Agile methodology encompasses platform architecture design, 
feature implementation across nine functional modules, and user interface development for 
Android and iOS platforms. Second, machine learning development incorporates deep 
learning model training and validation for spatial optimization functionality. Both 
components operate within the Agile SDLC framework with synchronized sprint cycles.  
 

 
Fig. 1. SDLC agile development cycle 

https://doi.org/10.61511/jbiogritech.v2i1.2025.2545


Widjanarko et al. (2025)    5 
 

 
JBIOGRITech. 2025, VOLUME 2, ISSUE 1                                                                                  https://doi.org/10.61511/jbiogritech.v2i1.2025.2545  

Research development conducted in Indonesian urban contexts, specifically targeting 
large cities including Jakarta, Surabaya, Bandung, and Medan. These locations were selected 
because they represent urban environments with high population density, significant land 
scarcity for agricultural activities, growing middle class populations with technology 
adoption potential, and documented urban farming initiatives requiring technological 
support (Amri, 2024; Tanjung et al., 2023). The temporal scope extends from initial 
planning through prototype development and validation, conducted during 2024-2025, 
aligning with rapid technology development requirements. 
 
2.2 Materials, tools, and technical infrastructure 

 
The research utilized multiple technological platforms and datasets. For deep learning 

model development, the You Only Look Once version 8 (YOLOv8) algorithm implemented 
through the Python programming environment serves as the primary object detection and 
segmentation framework. YOLOv8 was selected because of its superior performance in real-
time detection tasks, open-source availability, and established applications in agricultural 
optimization contexts (Budde et al., 2024; Suhas et al., 2024). The model architecture 
comprises backbone CSPDarknet, PANet neck structure, and efficient detection head 
enabling real time inference across diverse devices (Budde et al., 2024). Regularization 
techniques including Mosaic Augmentation, Random Horizontal Flip, and Mix Up 
augmentation techniques manage model generalization (Thakral et al., 2024).  

Training dataset comprises indoor environmental images including ceiling, wall, and 
floor photographs representing typical urban farming spaces. Images were collected from 
urban residential environments across target cities, reflecting diverse architectural styles, 
lighting conditions, and spatial configurations characteristic of urban farming locations. 
Dataset comprises approximately 1,200 labeled images across training, validation, and 
testing divisions. Data augmentation techniques including scaling transformations, 
geometric transformations, brightness adjustment, contrast modification, and color 
saturation adjustment expand effective training dataset size while maintaining realistic 
image characteristics. These techniques reflect empirically validated approaches for 
improving deep learning model robustness (Budde et al., 2024). 

For platform development, software architecture is implemented using modern web 
and mobile technologies supporting cross platform deployment. Backend infrastructure 
utilizes cloud computing services ensuring scalability, data security, and continuous 
availability. Frontend development for Android and iOS platforms employs native 
development frameworks optimizing user interface performance and device integration. 
Database architecture implements relational database management systems supporting 
transactional consistency for e-commerce and user management functionality. Internet of 
Things sensor integration supports realtime environmental monitoring through 
standardized IoT communication protocols enabling soil moisture, pH, and nutrient level 
measurement. 

 
2.3 Agile software development process 

 
The research implements Agile SDLC comprising iterative sprint cycles of two to four 

weeks duration. Each sprint cycle encompasses planning phase identifying sprint objectives 
and task allocation, implementation phase executing development tasks through daily 
standup meetings coordinating team activities, testing phase conducting continuous quality 
assurance through unit testing and integration testing, sprint review demonstrating 
completed features to stakeholders, and retrospective evaluation identifying process 
improvements for subsequent sprints (Budi et al., 2016). This cyclical approach enables 
rapid prototyping, early identification of design flaws through user feedback, and 
continuous enhancement of platform functionality. 
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Platform development encompasses nine integrated features. First, the AI layout 
designer feature utilizes YOLOv8 deep learning model to analyze photograph input from 
users, detect environmental features including light intensity and spatial dimensions, and 
automatically generate personalized garden layout recommendations. Second, the plant 
variety recommender feature implements machine learning algorithms considering climate 
conditions, available space, and user preferences to suggest appropriate crop selections. 
Third, the plant health detection feature employs computer vision analysis of user uploaded 
plant photographs to identify disease symptoms, pest damage, and nutritional deficiencies. 
Fourth, the soil and media health monitoring feature integrate IoT sensor data streams 
monitoring soil moisture, pH balance, and nutrient concentrations in real time, generating 
automated alerts for corrective action. Fifth, the e-commerce functionality facilitates 
transactions connecting urban farmers with suppliers for equipment and seeds and with 
consumers for farm produce. Sixth, the real time chat consultation feature provides a direct 
messaging interface with agricultural experts and community forum discussions. Seventh, 
the appointment scheduling system enables booking of expert consultations with calendar 
integration. Eighth, interactive tutorials and guides provide multimedia educational content 
covering urban farming techniques. Ninth, the analytics and reporting dashboard visualizes 
farm performance metrics and generates customizable performance reports.  
 
2.4 Deep learning model development 

 
Deep learning model development follows systematic methodology addressing spatial 

optimization for urban farming. Initial preprocessing phase involves image normalization, 
resizing standardized dimensions, and annotation with ground truth labels identifying 
suitable farming locations based on light intensity, ceiling height, and spatial configuration. 
Dataset division allocates 70% for training, 15% for validation, and 15% for testing, 
ensuring representative evaluation through unseen data. 

 

 
Fig. 2. Deep learning methodology flowchart 

 

Model training implements YOLOv8 architecture with configuration optimized for 
segmentation tasks. Training employs stochastic gradient descent optimization with 
adaptive learning rate scheduling. Regularization strategies including dropout layers, batch 
normalization, and data augmentation prevent overfitting while improving model 
generalization. Training continues for 100 epochs with monitoring of validation metrics at 
each epoch. Key performance metrics include mean Average Precision at intersection over 
union threshold 0.5 (mAP@0.5) measuring detection accuracy, recall quantifying detection 

https://doi.org/10.61511/jbiogritech.v2i1.2025.2545


Widjanarko et al. (2025)    7 
 

 
JBIOGRITech. 2025, VOLUME 2, ISSUE 1                                                                                  https://doi.org/10.61511/jbiogritech.v2i1.2025.2545  

completeness, and segment loss measuring segmentation precision. Model validation and 
testing employ inference phase evaluation. Testing dataset evaluation assesses model 
performance on previously unseen images. Performance benchmarking compares YOLOv8 
results against alternative deep learning architectures including Mask R-CNN and U-Net 
evaluating relative advantages. Qualitative evaluation examines model prediction 
visualizations ensuring spatial mapping accuracy and identifying potential failure modes. 

 

2.5 Platform prototyping and user interface development 
 
Platform prototyping implements design thinking principles prioritizing user 

experience and accessibility. Iterative prototype development employs low fidelity 
mockups for initial interface concepts, medium fidelity prototypes for feature validation, 
and high-fidelity prototypes for detailed user interaction patterns. User feedback from 
target demographic groups including urban farmers, agriculture extension officers, and 
technology literate consumers informs prototype refinement. The user interface follows 
mobile first design principles optimizing for Android and iOS platforms. Navigation 
architecture prioritizes accessibility enabling flexible feature access according to user 
workflow. Integration across nine features ensures seamless data flow supporting complete 
urban farming lifecycle from initial planning through production monitoring to market 
linkage. 
 
2.6 Data collection and analysis methods 

 
Data collection encompasses multiple sources. First, quantitative data from deep 

learning model training includes performance metrics systematically recorded at each 
training epoch. Second, qualitative data from user testing includes feedback from potential 
users regarding feature usability, perceived value, and implementation barriers. Third, 
comparative analysis data examines performance benchmarking against existing urban 
farming platforms and competing deep learning architectures. Fourth, technical 
performance data measures platform response time, data throughput, and system reliability 
under simulated user loads. Data analysis employs both quantitative and qualitative 
approaches. Quantitative analysis includes statistical evaluation of deep learning model 
metrics using precision, recall, F1 score, and mean Average Precision measurements. 
Performance comparison utilizes metrics benchmarking against baseline methods. 
Qualitative analysis applies thematic coding to user feedback identifying common themes 
regarding usability, feature importance, and implementation feasibility.  
 
2.7 Ethical considerations research scope and expected deliverables 
 

This research prioritizes data privacy protection implementing secure user 
authentication, encrypted data transmission, and anonymous data aggregation for 
analytics. Platform development adheres to environmental sustainability principles 
incorporating energy efficient algorithms and cloud infrastructure optimization. The 
research scope focuses on platform development and validation in Indonesian urban 
contexts. Generalization to other geographic contexts requires cultural adaptation and local 
customization beyond current research scope. Primary deliverables include the complete 
Urfalogy platform with nine fully functional features, trained and validated deep learning 
model achieving performance metrics exceeding baseline methods, comprehensive 
platform documentation supporting user adoption and technical maintenance, and 
demonstration of platform capability in supporting urban farming decision making. Success 
metrics include deep learning model achieving minimum mAP50 of 85%, platform 
responsiveness maintaining sub two second response time for user queries, and qualitative 
user feedback indicating high perceived usefulness for urban farming applications. 
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3. Results and Discussion 
 
3.1 Deep learning model performance 
 

The deep learning model development for the AI Layout Designer feature of Urfalogy 
demonstrated optimal performance across all evaluation metrics. Training of the YOLOv8 
segmentation model proceeded systematically through 100 epochs with continuous 
monitoring of performance indicators. The final model training results at epoch 100 
achieved segment loss of 0.56756, indicating high precision in pixel level segmentation of 
environmental features. Recall measurement reached 0.90011, demonstrating that the 
model successfully identified 90.01% of suitable agricultural areas within training images. 
Mean Average Precision at intersection over union threshold 0.5 (mAP@0.5) achieved 
0.90715, indicating strong overall accuracy in both detecting and precisely segmenting  
target objects (Budde et al., 2024; Suhas et al., 2024). 

 

Fig. 3. (a) Segment Loss; (b) Recall; (c) mAP 50  
 

These performance metrics represent substantial improvement over baseline methods 
and demonstrate effectiveness of the YOLOv8 architecture for urban farming spatial 
optimization. The combined metrics of high recall, low segment loss, and elevated mAP@0.5 
indicate that the model successfully learned environmental feature discrimination without 
significant overfitting. Comparison of training and validation metrics across epochs showed 
convergence without plateau effect, suggesting adequate model capacity and appropriate 
regularization implementation. The achievement of these metrics validates the 
preprocessing pipeline, data augmentation strategies, and architectural choices 
implemented during model development. 

 

 
Fig. 4. Model testing results (environmental object detection visualizations) 

 

Inference phase testing evaluated model performance on previously unseen images 
from urban environments. The model demonstrated robust capability to identify and 
differentiate environmental components including ceiling structures, wall surfaces, and 

c a b 
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floor configurations. Segmentation accuracy during inference enabled precise spatial 
mapping, creating pixel level masks identifying suitable agricultural spaces. Qualitative 
visualization of prediction results showed accurate boundary detection between 
environmental features and identification of locations with optimal light intensity and 
spatial configuration for urban farming implementation. These inference results validate 
that the trained model successfully generalized from training data to novel urban 
environments, a critical requirement for practical platform deployment. The deep learning 
model performance substantially exceeded alternative architectures previously applied to 
environmental analysis tasks. Comparison against Mask R-CNN baseline implementation 
revealed YOLOv8 superiority in processing speed while maintaining or exceeding 
segmentation precision (Neamah & Karim, 2023). The efficiency of YOLOv8 enables real-
time processing of user submitted photographs, supporting responsive user experience in 
platform implementation. Performance advantages of YOLOv8 over SARIMA and LSTM 
models in related agricultural contexts further validate architecture selection (Kurnadipare 
et al., 2025; Agustian et al., 2023). 
 
3.2 Platform feature implementation and functional validation 
 

Implementation of the nine integrated platform features proceeded according to Agile 
SDLC methodology across multiple sprint cycles. Each feature underwent iterative 
development with continuous testing, user feedback incorporation, and refinement. The AI 
Layout Designer feature successfully integrates the trained YOLOv8 model, accepting 
photograph input from users and generating personalized garden layout recommendations 
based on detected lighting conditions and spatial constraints. Testing confirmed rapid 
inference performance, with response times averaging 1.2 seconds for typical indoor 
photographs, well within acceptable limits for interactive user experience. The plant variety 
recommender feature employs machine learning algorithms implementing collaborative 
filtering and content-based recommendation approaches. Training data encompasses 
growing conditions, climate requirements, space constraints, and user preference patterns 
across Indonesian urban farming contexts. The recommended system testing with urban 
farmer focus groups revealed 87% accuracy in matching recommended plant varieties to 
user specified constraints. This performance indicates the recommendation engine 
successfully captures complex relationships between environmental conditions, user 
preferences, and horticultural requirements (Siswoyo et al., 2024). 

Plant health detection feature utilizes computer vision analysis of user uploaded plant 
photographs. Testing against agricultural disease databases including pest damage patterns, 
nutrient deficiency symptoms, and pathogenic infection markers achieved 91.7% precision 
in disease identification, comparable to performance of established agricultural diagnostic 
systems (Agustian et al., 2023; Neamah & Karim, 2023). The feature implementation enables 
rapid feedback to urban farmers regarding plant health status, supporting timely 
intervention for pest or disease management. Integration with expert consultation features 
provides users with recommendations for corrective action appropriate to identify health 
issues. Soil and media health monitoring features integrate IoT sensor arrays measuring soil 
moisture, pH balance, and nutrient concentrations. Real time data transmission through 
wireless communication protocols enables continuous monitoring without requiring user 
intervention. Alert generation functions notify users when environmental parameters 
deviate beyond optimal ranges for cultivated crops. Sensor calibration procedures ensure 
measurement accuracy while minimizing false positive alerts that could undermine user 
confidence. Field testing in urban farm environments across target cities demonstrated 
reliable data transmission and alert generation, supporting practical platform deployment.  

The e-commerce marketplace functionality facilitates transactions between urban 
farmers and input suppliers and between farmers and end consumers. Platform 
implementation includes secure payment processing, order tracking, and delivery 
management interfaces. Testing with small scale user groups revealed intuitive interface 
design with 94% completion rate for transaction workflows on first attempt, indicating 
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successful user interface design. Integration with existing agricultural supply networks in 
target cities demonstrates feasibility of connecting platform users with suppliers and 
markets. Real time chat consultation feature provides direct messaging interface with 
agricultural extension officers and expert consultants. Implementation includes message 
encryption, user authentication, and session management ensuring secure communication. 
Expert availability scheduling coordinates consultant time allocation, enabling responsive 
consultation during periods of user demand. Community forum functionality facilitates 
peer-to-peer knowledge sharing and user network development beyond formal expert 
consultation. User surveys indicated 89% satisfaction with consultation response time and 
quality, supporting platform value proposition for knowledge support.  

Appointment scheduling system integration with calendar applications enables users 
to book expert consultations with automatic reminder notifications. Implementation across 
Android and iOS platforms ensures cross platform consistency. Calendar integration utilizes 
standard iCalendar protocol enabling compatibility with prevalent calendar applications. 
Testing confirmed successful scheduling, reminder delivery, and consultant notification 
across simulated user scenarios and calendar platforms. Interactive tutorials and guides 
provide multimedia educational content covering urban farming techniques. Content 
development prioritized practical techniques relevant to Indonesian urban contexts, 
including vertical farming methods, container gardening, pest management without 
synthetic pesticides, and water conservation strategies. Tutorial organization enables step 
by step guidance for specific crop types cultivated in urban environments. User engagement 
metrics during prototype testing revealed an average tutorial completion rate of 78%, 
indicating that multimedia educational approach successfully supports learning.  

Analytics and reporting dashboard aggregates farm performance data across platform 
users. Visualization implements interactive charts displaying growth trajectories, yield 
projections, and comparative performance metrics. Customizable report generation enables 
users to extract specific metrics relevant to their farming objectives. Dashboard 
performance testing confirmed responsive visualization of datasets containing thousands of 
records, supporting scalability for growing user base. Integration testing across nine 
platform features confirmed seamless data flow supporting complete urban farming 
workflow. User pathway testing from initial planning through garden design, plant selection, 
health monitoring, expert consultation, and market linkage revealed no critical functional 
gaps. Prototype user testing with target demographic groups achieved 91% task completion 
rate across comprehensive workflow scenarios, indicating platform usability and functional 
completeness. 

 
3.3 Comparison with existing urban farming solutions 
 

Comparison of Urfalogy against existing urban farming platforms and technological 
solutions reveals several distinctive advantages. Unlike fragmented approaches addressing 
individual constraint dimensions, Urfalogy provides comprehensive integration addressing 
simultaneously technological, spatial, and economic barriers facing urban farmers. Existing 
platforms typically specialize in single domains such as pest detection, market linkage, or 
community knowledge sharing without providing integrated support across complete 
farming lifecycle. The integrated design philosophy of Urfalogy reflects theoretical 
understanding that urban farming constraints interact synergistically, requiring holistic 
solutions. Deep learning based spatial optimization represents a novel contribution not 
previously implemented in Indonesian urban farming contexts. Existing layout design 
approaches rely on manual recommendations or general principles without adapting to 
specific environmental characteristics of individual user spaces. The YOLOv8 based spatial 
optimization automatically analyzes unique environmental conditions, generating 
customized recommendations that maximize productivity within spatial constraints. This 
technological innovation directly addresses one of the three primary constraints limiting 
urban farming adoption in Indonesia (Amri, 2024). 
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Integration of IoT sensor technology for real time environmental monitoring exceeds 
capabilities of platforms relying on manual user reporting of farm conditions. Real-time 
monitoring enables immediate detection of conditions requiring intervention, supporting 
responsive farm management. Integration with expert consultation systems creates a 
decision support mechanism connecting automated monitoring with professional expertise.  
The E-commerce component of Urfalogy addresses economic barriers by reducing 
transaction costs for urban farmers by accessing input supplies and reaching consumer 
markets. Existing platforms typically focus on either supply-side or demand side 
connections without integration, requiring users to navigate multiple platforms. The 
integrated marketplace functionality simplifies transactions while building community of 
practice among urban farmers. 

Comparison of performance metrics with related agricultural technology 
implementations validates effectiveness of the Urfalogy approach. The YOLOv8 model 
performance (mAP@0.5 0.90715) exceeds performance of agricultural object detection 
implementations reported in comparable studies, confirming technical rigor (Agustian et al., 
2023; Suhas et al., 2024). Expert consultation integration and community functionality 
exceed capabilities of automated systems alone, reflecting human centered design 
principles that recognize importance of professional expertise and peer learning in 
agricultural decision making (Hakam, 2020). 

 
3.4 Relationship between results and theoretical framework 

 
The research findings demonstrate validation of core theoretical assumptions 

underlying Urfalogy development. First, deep learning algorithms prove effective for spatial 
optimization in constrained environments, confirming the hypothesis that artificial 
intelligence can address technological constraints in urban farming. The high performing 
YOLOv8 model provides empirical evidence supporting the theoretical expectation that 
machine learning can extract complex patterns from environmental data relevant to 
agricultural decision making. Second, the successful integration of nine diverse features 
within coherent platform architecture validates systems thinking approaches to addressing 
interconnected urban farming constraints. Results demonstrate that holistic platform 
design addressing technological, economic, and knowledge barriers simultaneously 
produces more effective solutions than fragmented approaches targeting individual 
constraints separately. This finding aligns with complex theory emphasizing emergent 
properties arising from integrated system components.  

Third, positive user feedback and high task completion rates during prototype testing 
validate human centered design principles prioritizing accessibility and user experience. 
The platform's success in supporting complete urban farming workflow from planning 
through market linkage reflects theoretical understanding that technological tools must 
integrate with human decision-making processes and social networks rather than replacing 
them. Fourth, the platform's achievement of success metrics regarding deep learning 
performance, responsiveness, and user satisfaction validates the selection of Agile SDLC 
methodology. Iterative development enabling continuous user feedback and rapid 
refinement produced platforms substantially more aligned with user needs than linear 
waterfall approaches would have achieved. This empirical result corroborates theoretical 
advantages of agile methodology documented in software engineering literature (Afandi et 
al., 2023). The integration of findings across technical performance, feature functionality, 
and user experience demonstrates that Urfalogy successfully bridges technology 
development and practical application requirements. Results validate that integrated 
artificial intelligence and human expert systems can effectively support urban farming 
adoption in Indonesian urban contexts characterized by land scarcity, capital limitations, 
and technology access constraints. 
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3.5 Urban farming sustainability implications 
 

The Urfalogy platform development and validation contributes to addressing 
fundamental challenges of urban food security in Indonesia. Successful implementation of 
AI powered spatial optimization, real time environmental monitoring, and integrated 
knowledge support systems provides a technological foundation for scaling urban farming 
beyond current limitations. The achievement of a high performing deep learning model and 
functional integration of nine platform features demonstrates technical feasibility of 
supporting urban agriculture through comprehensive technological systems. The platform's 
potential impact on three primary urban farming constraints warrants detailed analysis. 
First, the AI layout designer directly addresses spatial limitations by enabling optimization 
of constrained urban environments. By analyzing specific environmental characteristics 
including light intensity, ceiling height, and architectural features, the system enables 
productive agriculture in spaces that would otherwise remain unutilized. The 90.01% recall 
rate indicates that the system successfully identifies nearly all suitable agricultural spaces, 
minimizing opportunity loss.  

Second, the integrated e-commerce functionality reduces capital barriers by connecting 
urban farmers with affordable input sources and premium market opportunities. By 
reducing transaction costs and enabling direct producer to consumer relationships, the 
platform improves economic returns on agricultural investment, making urban farming 
more financially attractive to prospective practitioners. This economic improvement 
addresses the youth participation barrier, as financial returns become more comparable to 
alternative livelihood opportunities. Third, the comprehensive knowledge support system 
combining automated analysis, expert consultation, and educational content addresses 
technological and knowledge barriers limiting urban farming productivity. By providing 
decision support for crop selection, health management, and environmental optimization, 
the platform reduces knowledge deficits that currently constrain urban farmer success 
rates. Integration with community knowledge networks builds social capital supporting 
collective learning and shared problem-solving. 

Beyond addressing immediate constraint domains, Urfalogy contributes to broader 
sustainability objectives aligned with Sustainable Development Goal 11.3. The platform 
supports inclusive urbanization by enabling previously excluded urban residents to engage 
in productive food production. Participatory urban planning is enhanced through the data-
driven design approach that incorporates user preferences and local environmental 
conditions rather than imposing generic solutions. The platform's capacity to suppor t both 
individual farmer productivity and community knowledge networks demonstrates 
commitment to human development alongside technological advancement.  The platform 
development experience provides lessons relevant to scaling urban agriculture across 
Indonesia. Technical feasibility of implementing advanced machine learning for agricultural 
optimization with locally available data has been demonstrated. The acceptance of 
technological solutions by target user populations, evidenced through high prototype 
engagement rates, indicates cultural compatibility beyond technical feasibility. The success 
of human centered design principles in creating accessible technology suggests that 
effective urban agriculture support systems must integrate technological capability with 
social and economic dimensions. 

 

4. Conclusions 
 

This research successfully developed and validated Urfalogy, an integrated artificial 
intelligence-powered platform addressing critical constraints limiting urban farming 
adoption in Indonesia. The primary contribution of this work lies in demonstrating that 
comprehensive technological systems combining deep learning-based spatial optimization, 
real-time environmental monitoring, expert consultation integration, and e-commerce 
functionality can effectively support sustainable urban agriculture in land-scarce urban 
environments. The achievement of a high performing deep learning model (mAP@0.5 
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0.90715, recall 0.90011) coupled with successful implementation of nine integrated 
platform features validates the technical feasibility and functional completeness of this 
approach. These results establish that artificial intelligence and human expert systems can 
work synergistically to overcome interconnected barriers of spatial limitation, capital 
insufficiency, and technological inadequacy that currently constrain urban farming in 
Indonesian cities.  

The originality of this research extends beyond technical implementation to encompass 
systemic understanding of urban farming challenges. Unlike fragmented approaches 
addressing individual constraint dimensions, Urfalogy demonstrates that holistic platform 
design integrating technological, economic, and knowledge-support dimensions produces 
superior outcomes compared to single domain solutions. This system-level contribution 
reflects complexity theory principles emphasizing emergent properties arising from 
integrated components. The platform's successful integration of automated spatial analysis, 
real-time monitoring, expert consultation, community knowledge networks, and market 
linkage represents a paradigmatic shift in technological support for urban agriculture, 
positioning technology as enabler of human decision making rather than replacement for 
human expertise. 

The implications for urban food security and sustainable development are substantial. 
By enabling productive agriculture in previously unutilized urban spaces, optimizing 
economic returns through market access, and reducing knowledge barriers through 
integrated expert consultation and educational systems, Urfalogy provides a technological 
foundation for scaling urban farming beyond current limitations. The platform's 
achievement of 91% task completion rate during user testing and 89% consultation 
satisfaction indicate strong user acceptance, suggesting cultural and practical viability of 
technology-enabled urban agriculture. This technological solution contributes directly to 
the achievement of Sustainable Development Goal 11.3 by supporting inclusive 
urbanization and participatory urban planning while enhancing food security and 
improving urban livelihood opportunities. 

Future research directions include spatial expansion of platform validation to 
additional Indonesian cities and Southeast Asian contexts, longitudinal assessment of urban 
farmer outcomes including productivity and income improvements, integration of climate 
adaptation features supporting agricultural resilience in contexts of environmental 
variability, and investigation of community level impacts including food security outcomes 
and social capital development among urban farming networks. The successful 
development of Urfalogy provides the foundation for addressing persistent challenges of 
urban food systems while demonstrating broader applicability of integrated technology 
platforms to complex development challenges requiring simultaneous attention to 
technological, economic, and social dimensions.  
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