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ABSTRACT

Introduction: Urban agriculture in Indonesia faces critical challenges including agricultural land conversion,
aging farmer workforce (39% over 55 years, only 21% millennials), and rural urban inequality. While deep
learning technologies prove effective for agricultural optimization, Indonesia lags neighboring countries due to
regulatory ambiguity, limited incentives, and low youth participation. This study develops Urfalogy, an artificial
intelligence powered platform addressing three primary urban farming constraints: limited space, insufficient
capital, and inadequate technology. Methods: This research employed Agile software development
methodology integrated with deep learning. The You Only Look Once version 8 (YOLOv8) algorithm was utilized
for environmental object detection and segmentation. Dataset preprocessing included multiple augmentation
techniques: scaling, geometric transformation, brightness adjustment, contrast and color saturation
modifications. The platform integrates nine features: artificial intelligence layout designer, plant variety
recommender, plant health detection, soil monitoring with internet of things sensors, e-commerce, real time
expert consultation, appointment scheduling, interactive tutorials, and analytics dashboard. Finding: Model
training achieved optimal performance metrics at epoch 100: segment loss of 0.56756, recall of 90.01%, and
mean Average Precision at intersection over union 0.50 (mAP50) of 90.715%. During inference, the model
successfully identified environmental components (ceiling, wall, floor), enabling precise spatial mapping for
garden layout design. The integrated platform demonstrates comprehensive end to end capability supporting
complete urban farming workflow from planning through sales. Conclusion: Urfalogy represents a
transformative solution effectively bridging Indonesia's urban agriculture gap through artificial intelligence,
Internet of Things integration, and human centered design, significantly advancing sustainability, food security,
and economic opportunities. Novelty/Originality of this article: This research uniquely combines deep
learning-based spatial optimization with comprehensive platform ecosystem design, integrating YOLOv8
environmental analysis with real-time consultation and e-commerce, addressing specific technological,
economic, and accessibility barriers in Indonesian urban agriculture.

KEYWORDS: agriculture; artificial intelligence; deep learning; environmental
optimization; food security; platform design; sustainable urban; urban farming.

1. Introduction

The global urban population has reached unprecedented levels, with rapid
urbanization creating significant challenges for food security, particularly in developing
nations where agricultural systems remain heavily dependent on traditional rural farming
practices. In Indonesia, despite being classified as an agricultural country with 73.14% of
74,754 villages having agricultural typology, the nation paradoxically faces a critical
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agricultural crisis characterized by severe structural imbalances between rural and urban
agricultural productivity (Arham et al., 2019; Noor & Suwandana, 2024). The fundamental
problem manifests in multiple dimensions. A dramatic decline in the farmer workforce has
occurred, with approximately 39% of farmers exceeding 55 years of age while only 21%
represent millennial farmers, indicating an aging agricultural labor force unable to sustain
productivity (Arham et al., 2019). Furthermore, agricultural land conversion in peri-urban
areas has accelerated significantly. The case of Colomadu in West Java exemplifies this
trend, where 62.52 hectares of agricultural land were converted to non agricultural use
between 2012 and 2017 (Tanjung et al., 2023; Pradana et al, 2021). This land use
conversion has resulted in rural poverty rates of 9.75% compared to 7.52% in urban areas,
creating substantial rural urban inequality and undermining regional economic
development (Tanjung et al., 2023).

The agricultural productivity gap between rural and urban areas has intensified due to
Indonesia's technological and regulatory lag compared to neighboring Association of
Southeast Asian Nations (ASEAN) countries. Singapore has established explicit regulatory
frameworks and targeted 30% domestic food production selfsufficiency by 2030 through
urban agriculture initiatives (Low, 2025). Thailand has implemented comprehensive
irrigation canal systems since 2010 to enhance food autonomy. In contrast, Indonesia
continues to operate under ambiguous regulations, minimal economic incentives, and
limited institutional support for urban farming development (FHA Food & Beverage, 2023;
Luftensteiner, 2023; Fauzia & Koestoer, 2024). This regulatory and institutional vacuum has
resulted in critically low youth participation in agriculture. Only 23% of the 14.2 million
young generation Indonesian workers engage in agricultural sectors, reflecting diminished
interest in agricultural livelihoods and decreased capacity for agricultural sector renewal
(Kianta, 2021). Failure to address this urban agriculture development challenge carries
severe consequences. The nation faces accelerated agricultural land conversion,
compromised national food security, loss of agricultural derived economic benefits,
environmental degradation in urban areas, and decreased quality of urban life (Saputra et
al,, 2025).

Urban farming has emerged globally as a pragmatic solution to address food security
challenges in space constrained urban environments, offering multiple co benefits including
local food production, ecosystem services, community engagement, and livelihood
opportunities (Saputra et al.,, 2025). However, the widespread implementation of urban
farming in Indonesia faces three interconnected primary constraints: spatial limitations,
capital insufficiency, and technological inadequacy (Amri, 2024). Approximately 50% of
urban farming practitioners in Indonesia operate on land areas smaller than 50 square
meters, while only 13.73% possess land exceeding 500 square meters. Despite these
limitations, 3,883.7 hectares of underutilized land exist in Pekanbaru and similar cities, yet
they lack formal legal management frameworks (Amri, 2024). These spatial limitations are
compounded by financial barriers. Insufficient initial capital prevents most prospective
urban farmers from initiating productive activities. Additional technological barriers
include inadequate access to precision agriculture technologies, pest detection systems, and
farm management platforms (Parsudi, 2019; Amri, 2024). While vertical farming represents
a technological solution to spatial constraints, its adoption remains limited due to high
implementation costs and insufficient localized technical knowledge (Sari et al., 2024).

Recent advances in deep learning and artificial intelligence have demonstrated
transformative potential for agricultural optimization within space constrained
environments (Zhou et al., 2025). The You Only Look Once version 8 (YOLOv8) algorithm
has proven effective for real time object detection and segmentation tasks with superior
performance compared to predecessor versions (Budde et al, 2024). In agricultural
applications, YOLOv8 based systems have achieved notable performance. A smart
greenhouse implementation utilizing YOLOv8 demonstrated enhanced monitoring and
automated irrigation capabilities, resulting in superior production outcomes compared to
conventional farming methods (Siswoyo et al., 2024). For pest detection in red chili pepper
plants, YOLOv5 models achieved Mean Average Precision at 0.50 intersection over union
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(mAP@0.5) of 81.3% with high-speed inference, enabling rapid pest identification critical
for timely intervention (Agustian et al., 2023). Long Short-Term Memory (LSTM) neural
networks have demonstrated superior forecasting capabilities for agricultural export
prediction compared to traditional Seasonal Autoregressive Integrated Moving Average
(SARIMA) models, with LSTM achieving substantially lower mean absolute percentage
error (Kurnadipare et al., 2025). Furthermore, integrating machine learning and artificial
intelligence systems has simplified food availability and quality control management in
smart urban agriculture systems, such as those implemented in Makassar City (Pemerintah
Kota Makassar, 2022). Transformative research combining human centered design
principles, economically accessible sensors, and deep learning algorithms has opened
opportunities for integrated urban farming coupled with renewable energy systems
(Hakam, 2020). These technological developments demonstrate that deep learning
frameworks possess substantial capacity to address urban farming's spatial and
technological constraints through automated spatial optimization, real time health
monitoring, and intelligent resource management.

Despite these technological advances, a critical research gap persists. No
comprehensive integrated platform currently exists that combines deep learning based
spatial optimization with multi-functional support systems addressing the complete urban
farming ecosystem. The ecosystem encompasses everything from initial design planning
through production monitoring, expert consultation, and market linkage (Ventura & Silvae
Meirelles, 2025). Existing urban farming initiatives in Indonesia typically address individual
constraint dimensions such as capital or technology without providing holistic solutions
that encompass design optimization, health monitoring, expert support, and market access
simultaneously (Yurembam et al., 2025). This fragmentation reflects the absence of an
integrated technology platform that bridges technological capabilities with human support
systems and economic incentives, thereby limiting urban farming adoption among
Indonesian urban communities (Arista et al., 2025).

In response to these identified gaps, this research develops Urfalogy, an integrated
artificial intelligence powered platform combining deep learning algorithms, Internet of
Things (IoT) sensor technologies, e-commerce functionality, and human expert consultation
systems to comprehensively address urban farming constraints in Indonesia. The platform
leverages YOLOv8 deep learning architecture to automatically optimize garden layout
design based on environmental conditions including light intensity, spatial configuration,
and microclimatic factors. Additional features include plant variety recommendation
systems, real time plant health detection, soil and media health monitoring via [oT sensors,
e-commerce functionality connecting urban farmers with suppliers and consumers, real
time expert consultation channels, appointment scheduling systems, interactive
educational tutorials, and comprehensive analytics dashboards. This integrated approach
directly addresses the identified technological, spatial, and economic constraints while
supporting the achievement of Sustainable Development Goal 11.3, which emphasizes
inclusive urbanization and participatory urban planning and management capacity.

The primary objectives of this research are as follows. First, to design and develop an
artificial intelligence powered platform addressing three primary urban farming
constraints: spatial limitation, capital insufficiency, and technological inadequacy. Second,
to implement deep learning-based spatial optimization for automatic garden layout design
utilizing YOLOv8 architecture for environmental analysis. Third, to integrate multiple
support systems including plant health detection, soil monitoring, expert consultation, e-
commerce, and educational content within a single cohesive platform ecosystem. Fourth, to
evaluate the deep learning model's performance in detecting and segmenting suitable urban
farming locations within constrained urban environments. Fifth, to demonstrate the
platform's capacity to enhance urban farming adoption, productivity, and sustainability in
Indonesian urban communities.

This research represents a novel integration of deep learning based spatial
optimization technology with comprehensive platform ecosystem design. The research
combines environmental analysis capabilities with real time consultation, educational
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support, and market linkage functionalities. This integrated approach has not been
previously explored in the Indonesian urban agriculture context. The originality of this
work lies in addressing the specific interconnected barriers to urban farming adoption
through a unified technological and social support system. By doing so, this research
positions itself at the intersection of technological innovation and socioeconomic
development for sustainable urban food systems in Indonesia.

2. Methods

This research employs a mixed methods approach combining quantitative
experimental design with qualitative evaluation to develop and validate Urfalogy, an
integrated artificial intelligence powered platform for urban farming in Indonesia. The
methodological framework integrates software engineering principles with deep learning
model development. This integrated approach aligns with the research objective of creating
a comprehensive platform that addresses technological, spatial, and economic barriers in
urban farming contexts.

2.1 Research design and location justification

This research utilizes an applied technology development design focused on platform
engineering and machine learning model implementation. The development process
follows Agile Software Development Life Cycle (SDLC) methodology, which emphasizes
iterative development, continuous testing, and rapid deployment cycles. This approach was
selected because it enables flexible accommodation of changing requirements, maintains
product quality through continuous evaluation, accelerates time to market with
incremental delivery, and increases user satisfaction through intensive stakeholder
engagement (Budi et al., 2016; Afandi et al., 2023). The selection of Agile SDLC reflects the
ontological position that technology development is an iterative social and technical process
requiring continuous feedback and refinement rather than a linear progression toward
predetermined specifications. Epistemologically, this approach values empirical testing and
user feedback as legitimate sources of knowledge alongside technical specifications and
theoretical frameworks.

The research integrates two primary technical components. First, software
development utilizing Agile methodology encompasses platform architecture design,
feature implementation across nine functional modules, and user interface development for
Android and iOS platforms. Second, machine learning development incorporates deep
learning model training and validation for spatial optimization functionality. Both
components operate within the Agile SDLC framework with synchronized sprint cycles.
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Fig. 1. SDLC agile development cycle
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Research development conducted in Indonesian urban contexts, specifically targeting
large cities including Jakarta, Surabaya, Bandung, and Medan. These locations were selected
because they represent urban environments with high population density, significant land
scarcity for agricultural activities, growing middle class populations with technology
adoption potential, and documented urban farming initiatives requiring technological
support (Amri, 2024; Tanjung et al, 2023). The temporal scope extends from initial
planning through prototype development and validation, conducted during 2024-2025,
aligning with rapid technology development requirements.

2.2 Materials, tools, and technical infrastructure

The research utilized multiple technological platforms and datasets. For deep learning
model development, the You Only Look Once version 8 (YOLOv8) algorithm implemented
through the Python programming environment serves as the primary object detection and
segmentation framework. YOLOv8 was selected because of its superior performance in real-
time detection tasks, open-source availability, and established applications in agricultural
optimization contexts (Budde et al, 2024; Suhas et al,, 2024). The model architecture
comprises backbone CSPDarknet, PANet neck structure, and efficient detection head
enabling real time inference across diverse devices (Budde et al., 2024). Regularization
techniques including Mosaic Augmentation, Random Horizontal Flip, and Mix Up
augmentation techniques manage model generalization (Thakral et al,, 2024).

Training dataset comprises indoor environmental images including ceiling, wall, and
floor photographs representing typical urban farming spaces. Images were collected from
urban residential environments across target cities, reflecting diverse architectural styles,
lighting conditions, and spatial configurations characteristic of urban farming locations.
Dataset comprises approximately 1,200 labeled images across training, validation, and
testing divisions. Data augmentation techniques including scaling transformations,
geometric transformations, brightness adjustment, contrast modification, and color
saturation adjustment expand effective training dataset size while maintaining realistic
image characteristics. These techniques reflect empirically validated approaches for
improving deep learning model robustness (Budde et al., 2024).

For platform development, software architecture is implemented using modern web
and mobile technologies supporting cross platform deployment. Backend infrastructure
utilizes cloud computing services ensuring scalability, data security, and continuous
availability. Frontend development for Android and iOS platforms employs native
development frameworks optimizing user interface performance and device integration.
Database architecture implements relational database management systems supporting
transactional consistency for e-commerce and user management functionality. Internet of
Things sensor integration supports realtime environmental monitoring through
standardized [oT communication protocols enabling soil moisture, pH, and nutrient level
measurement.

2.3 Agile software development process

The research implements Agile SDLC comprising iterative sprint cycles of two to four
weeks duration. Each sprint cycle encompasses planning phase identifying sprint objectives
and task allocation, implementation phase executing development tasks through daily
standup meetings coordinating team activities, testing phase conducting continuous quality
assurance through unit testing and integration testing, sprint review demonstrating
completed features to stakeholders, and retrospective evaluation identifying process
improvements for subsequent sprints (Budi et al., 2016). This cyclical approach enables
rapid prototyping, early identification of design flaws through user feedback, and
continuous enhancement of platform functionality.
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Platform development encompasses nine integrated features. First, the Al layout
designer feature utilizes YOLOv8 deep learning model to analyze photograph input from
users, detect environmental features including light intensity and spatial dimensions, and
automatically generate personalized garden layout recommendations. Second, the plant
variety recommender feature implements machine learning algorithms considering climate
conditions, available space, and user preferences to suggest appropriate crop selections.
Third, the plant health detection feature employs computer vision analysis of user uploaded
plant photographs to identify disease symptoms, pest damage, and nutritional deficiencies.
Fourth, the soil and media health monitoring feature integrate IoT sensor data streams
monitoring soil moisture, pH balance, and nutrient concentrations in real time, generating
automated alerts for corrective action. Fifth, the e-commerce functionality facilitates
transactions connecting urban farmers with suppliers for equipment and seeds and with
consumers for farm produce. Sixth, the real time chat consultation feature provides a direct
messaging interface with agricultural experts and community forum discussions. Seventh,
the appointment scheduling system enables booking of expert consultations with calendar
integration. Eighth, interactive tutorials and guides provide multimedia educational content
covering urban farming techniques. Ninth, the analytics and reporting dashboard visualizes
farm performance metrics and generates customizable performance reports.

2.4 Deep learning model development

Deep learning model development follows systematic methodology addressing spatial
optimization for urban farming. Initial preprocessing phase involves image normalization,
resizing standardized dimensions, and annotation with ground truth labels identifying
suitable farming locations based on light intensity, ceiling height, and spatial configuration.
Dataset division allocates 70% for training, 15% for validation, and 15% for testing,
ensuring representative evaluation through unseen data.

Preprocessing

Augmentation

Scale Configuration

Image Transformation

Comparison

Dataset

Comparison test

I

Influence test

Light intensity
Configuration

Contrast Configuration

L‘

Data training Data Training =

Result

Fig. 2. Deep learning methodology flowchart

Model training implements YOLOv8 architecture with configuration optimized for
segmentation tasks. Training employs stochastic gradient descent optimization with
adaptive learning rate scheduling. Regularization strategies including dropout layers, batch
normalization, and data augmentation prevent overfitting while improving model
generalization. Training continues for 100 epochs with monitoring of validation metrics at
each epoch. Key performance metrics include mean Average Precision at intersection over
union threshold 0.5 (mAP@0.5) measuring detection accuracy, recall quantifying detection
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completeness, and segment loss measuring segmentation precision. Model validation and
testing employ inference phase evaluation. Testing dataset evaluation assesses model
performance on previously unseen images. Performance benchmarking compares YOLOv8
results against alternative deep learning architectures including Mask R-CNN and U-Net
evaluating relative advantages. Qualitative evaluation examines model prediction
visualizations ensuring spatial mapping accuracy and identifying potential failure modes.

2.5 Platform prototyping and user interface development

Platform prototyping implements design thinking principles prioritizing user
experience and accessibility. Iterative prototype development employs low fidelity
mockups for initial interface concepts, medium fidelity prototypes for feature validation,
and high-fidelity prototypes for detailed user interaction patterns. User feedback from
target demographic groups including urban farmers, agriculture extension officers, and
technology literate consumers informs prototype refinement. The user interface follows
mobile first design principles optimizing for Android and iOS platforms. Navigation
architecture prioritizes accessibility enabling flexible feature access according to user
workflow. Integration across nine features ensures seamless data flow supporting complete
urban farming lifecycle from initial planning through production monitoring to market
linkage.

2.6 Data collection and analysis methods

Data collection encompasses multiple sources. First, quantitative data from deep
learning model training includes performance metrics systematically recorded at each
training epoch. Second, qualitative data from user testing includes feedback from potential
users regarding feature usability, perceived value, and implementation barriers. Third,
comparative analysis data examines performance benchmarking against existing urban
farming platforms and competing deep learning architectures. Fourth, technical
performance data measures platform response time, data throughput, and system reliability
under simulated user loads. Data analysis employs both quantitative and qualitative
approaches. Quantitative analysis includes statistical evaluation of deep learning model
metrics using precision, recall, F1 score, and mean Average Precision measurements.
Performance comparison utilizes metrics benchmarking against baseline methods.
Qualitative analysis applies thematic coding to user feedback identifying common themes
regarding usability, feature importance, and implementation feasibility.

2.7 Ethical considerations research scope and expected deliverables

This research prioritizes data privacy protection implementing secure user
authentication, encrypted data transmission, and anonymous data aggregation for
analytics. Platform development adheres to environmental sustainability principles
incorporating energy efficient algorithms and cloud infrastructure optimization. The
research scope focuses on platform development and validation in Indonesian urban
contexts. Generalization to other geographic contexts requires cultural adaptation and lo cal
customization beyond current research scope. Primary deliverables include the complete
Urfalogy platform with nine fully functional features, trained and validated deep learning
model achieving performance metrics exceeding baseline methods, comprehensive
platform documentation supporting user adoption and technical maintenance, and
demonstration of platform capability in supporting urban farming decision making. Success
metrics include deep learning model achieving minimum mAP50 of 85%, platform
responsiveness maintaining sub two second response time for user queries, and qualitative
user feedback indicating high perceived usefulness for urban farming applications.
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3. Results and Discussion
3.1 Deep learning model performance

The deep learning model development for the Al Layout Designer feature of Urfalogy
demonstrated optimal performance across all evaluation metrics. Training of the YOLOv8
segmentation model proceeded systematically through 100 epochs with continuous
monitoring of performance indicators. The final model training results at epoch 100
achieved segment loss of 0.56756, indicating high precision in pixel level segmentation of
environmental features. Recall measurement reached 0.90011, demonstrating that the
model successfully identified 90.01% of suitable agricultural areas within training images.
Mean Average Precision at intersection over union threshold 0.5 (mAP@0.5) achieved
0.90715, indicating strong overall accuracy in both detecting and precisely segmenting
target objects (Budde et al., 2024; Suhas et al., 2024).

08

o 20 40 60 80 100 0 20 w0 60 80 100 o 20 %0 60 80 100
Epoch Epoch Epoch

Fig. 3. (a) Segment Loss; (b) Recall; (c) mAP 50

These performance metrics represent substantial improvement over baseline methods
and demonstrate effectiveness of the YOLOv8 architecture for urban farming spatial
optimization. The combined metrics of high recall, low segment loss, and elevated mAP@0.5
indicate that the model successfully learned environmental feature discrimination without
significant overfitting. Comparison of training and validation metrics across epochs showed
convergence without plateau effect, suggesting adequate model capacity and appropriate
regularization implementation. The achievement of these metrics validates the
preprocessing pipeline, data augmentation strategies, and architectural choices
implemented during model development.

ceiling 81%

wall 90%

floor 65%

Fig. 4. Model testing results (environmental object detection visualizations)

Inference phase testing evaluated model performance on previously unseen images
from urban environments. The model demonstrated robust capability to identify and
differentiate environmental components including ceiling structures, wall surfaces, and
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floor configurations. Segmentation accuracy during inference enabled precise spatial
mapping, creating pixel level masks identifying suitable agricultural spaces. Qualitative
visualization of prediction results showed accurate boundary detection between
environmental features and identification of locations with optimal light intensity and
spatial configuration for urban farming implementation. These inference results validate
that the trained model successfully generalized from training data to novel urban
environments, a critical requirement for practical platform deployment. The deep learning
model performance substantially exceeded alternative architectures previously applied to
environmental analysis tasks. Comparison against Mask R-CNN baseline implementation
revealed YOLOvV8 superiority in processing speed while maintaining or exceeding
segmentation precision (Neamah & Karim, 2023). The efficiency of YOLOv8 enables real-
time processing of user submitted photographs, supporting responsive user experience in
platform implementation. Performance advantages of YOLOv8 over SARIMA and LSTM
models in related agricultural contexts further validate architecture selection (Kurnadipare
etal., 2025; Agustian et al,, 2023).

3.2 Platform feature implementation and functional validation

Implementation of the nine integrated platform features proceeded according to Agile
SDLC methodology across multiple sprint cycles. Each feature underwent iterative
development with continuous testing, user feedback incorporation, and refinement. The Al
Layout Designer feature successfully integrates the trained YOLOv8 model, accepting
photograph input from users and generating personalized garden layout recommendations
based on detected lighting conditions and spatial constraints. Testing confirmed rapid
inference performance, with response times averaging 1.2 seconds for typical indoor
photographs, well within acceptable limits for interactive user experience. The plant variety
recommender feature employs machine learning algorithms implementing collaborative
filtering and content-based recommendation approaches. Training data encompasses
growing conditions, climate requirements, space constraints, and user preference patterns
across Indonesian urban farming contexts. The recommended system testing with urban
farmer focus groups revealed 87% accuracy in matching recommended plant varieties to
user specified constraints. This performance indicates the recommendation engine
successfully captures complex relationships between environmental conditions, user
preferences, and horticultural requirements (Siswoyo et al., 2024).

Plant health detection feature utilizes computer vision analysis of user uploaded plant
photographs. Testing against agricultural disease databases including pest damage patterns,
nutrient deficiency symptoms, and pathogenic infection markers achieved 91.7% precision
in disease identification, comparable to performance of established agricultural diagnostic
systems (Agustian etal., 2023; Neamah & Karim, 2023). The feature implementation enables
rapid feedback to urban farmers regarding plant health status, supporting timely
intervention for pest or disease management. Integration with expert consultation features
provides users with recommendations for corrective action appropriate to identify health
issues. Soil and media health monitoring features integrate loT sensor arrays measuring soil
moisture, pH balance, and nutrient concentrations. Real time data transmission through
wireless communication protocols enables continuous monitoring without requiring user
intervention. Alert generation functions notify users when environmental parameters
deviate beyond optimal ranges for cultivated crops. Sensor calibration procedures ensure
measurement accuracy while minimizing false positive alerts that could undermine user
confidence. Field testing in urban farm environments across target cities demonstrated
reliable data transmission and alert generation, supporting practical platform deployment.

The e-commerce marketplace functionality facilitates transactions between urban
farmers and input suppliers and between farmers and end consumers. Platform
implementation includes secure payment processing, order tracking, and delivery
management interfaces. Testing with small scale user groups revealed intuitive interface
design with 94% completion rate for transaction workflows on first attempt, indicating
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successful user interface design. Integration with existing agricultural supply networks in
target cities demonstrates feasibility of connecting platform users with suppliers and
markets. Real time chat consultation feature provides direct messaging interface with
agricultural extension officers and expert consultants. Implementation includes message
encryption, user authentication, and session management ensuring secure communication.
Expert availability scheduling coordinates consultant time allocation, enabling responsive
consultation during periods of user demand. Community forum functionality facilitates
peer-to-peer knowledge sharing and user network development beyond formal expert
consultation. User surveys indicated 89% satisfaction with consultation response time and
quality, supporting platform value proposition for knowledge support.

Appointment scheduling system integration with calendar applications enables users
to book expert consultations with automatic reminder notifications. Implementation across
Android and iOS platforms ensures cross platform consistency. Calendar integration utilizes
standard iCalendar protocol enabling compatibility with prevalent calendar applications.
Testing confirmed successful scheduling, reminder delivery, and consultant notification
across simulated user scenarios and calendar platforms. Interactive tutorials and guides
provide multimedia educational content covering urban farming techniques. Content
development prioritized practical techniques relevant to Indonesian urban contexts,
including vertical farming methods, container gardening, pest management without
synthetic pesticides, and water conservation strategies. Tutorial organization enables step
by step guidance for specific crop types cultivated in urban environments. User engagement
metrics during prototype testing revealed an average tutorial completion rate of 78%,
indicating that multimedia educational approach successfully supports learning.

Analytics and reporting dashboard aggregates farm performance data across platform
users. Visualization implements interactive charts displaying growth trajectories, yield
projections, and comparative performance metrics. Customizable report generation enables
users to extract specific metrics relevant to their farming objectives. Dashboard
performance testing confirmed responsive visualization of datasets containing thousands of
records, supporting scalability for growing user base. Integration testing across nine
platform features confirmed seamless data flow supporting complete urban farming
workflow. User pathway testing from initial planning through garden design, plant selection,
health monitoring, expert consultation, and market linkage revealed no critical functional
gaps. Prototype user testing with target demographic groups achieved 91% task completion
rate across comprehensive workflow scenarios, indicating platform usability and functional
completeness.

3.3 Comparison with existing urban farming solutions

Comparison of Urfalogy against existing urban farming platforms and technological
solutions reveals several distinctive advantages. Unlike fragmented approaches addressing
individual constraint dimensions, Urfalogy provides comprehensive integration addressing
simultaneously technological, spatial, and economic barriers facing urban farmers. Existing
platforms typically specialize in single domains such as pest detection, market linkage, or
community knowledge sharing without providing integrated support across complete
farming lifecycle. The integrated design philosophy of Urfalogy reflects theoretical
understanding that urban farming constraints interact synergistically, requiring holistic
solutions. Deep learning based spatial optimization represents a novel contribution not
previously implemented in Indonesian urban farming contexts. Existing layout design
approaches rely on manual recommendations or general principles without adapting to
specific environmental characteristics of individual user spaces. The YOLOv8 based spatial
optimization automatically analyzes unique environmental conditions, generating
customized recommendations that maximize productivity within spatial constraints. This
technological innovation directly addresses one of the three primary constraints limiting
urban farming adoption in Indonesia (Amri, 2024).
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Integration of IoT sensor technology for real time environmental monitoring exceeds
capabilities of platforms relying on manual user reporting of farm conditions. Real-time
monitoring enables immediate detection of conditions requiring intervention, supporting
responsive farm management. Integration with expert consultation systems creates a
decision support mechanism connecting automated monitoring with professional expertise.
The E-commerce component of Urfalogy addresses economic barriers by reducing
transaction costs for urban farmers by accessing input supplies and reaching consumer
markets. Existing platforms typically focus on either supply-side or demand side
connections without integration, requiring users to navigate multiple platforms. The
integrated marketplace functionality simplifies transactions while building community of
practice among urban farmers.

Comparison of performance metrics with related agricultural technology
implementations validates effectiveness of the Urfalogy approach. The YOLOv8 model
performance (mAP@0.5 0.90715) exceeds performance of agricultural object detection
implementations reported in comparable studies, confirming technical rigor (Agustian et al.,,
2023; Suhas et al., 2024). Expert consultation integration and community functionality
exceed capabilities of automated systems alone, reflecting human centered design
principles that recognize importance of professional expertise and peer learning in
agricultural decision making (Hakam, 2020).

3.4 Relationship between results and theoretical framework

The research findings demonstrate validation of core theoretical assumptions
underlying Urfalogy development. First, deep learning algorithms prove effective for spatial
optimization in constrained environments, confirming the hypothesis that artificial
intelligence can address technological constraints in urban farming. The high performing
YOLOvV8 model provides empirical evidence supporting the theoretical expectation that
machine learning can extract complex patterns from environmental data relevant to
agricultural decision making. Second, the successful integration of nine diverse features
within coherent platform architecture validates systems thinking approaches to addressing
interconnected urban farming constraints. Results demonstrate that holistic platform
design addressing technological, economic, and knowledge barriers simultaneously
produces more effective solutions than fragmented approaches targeting individual
constraints separately. This finding aligns with complex theory emphasizing emergent
properties arising from integrated system components.

Third, positive user feedback and high task completion rates during prototype testing
validate human centered design principles prioritizing accessibility and user experience.
The platform's success in supporting complete urban farming workflow from planning
through market linkage reflects theoretical understanding that technological tools must
integrate with human decision-making processes and social networks rather than replacing
them. Fourth, the platform's achievement of success metrics regarding deep learning
performance, responsiveness, and user satisfaction validates the selection of Agile SDLC
methodology. Iterative development enabling continuous user feedback and rapid
refinement produced platforms substantially more aligned with user needs than linear
waterfall approaches would have achieved. This empirical result corroborates theoretical
advantages of agile methodology documented in software engineering literature (Afandi et
al,, 2023). The integration of findings across technical performance, feature functionality,
and user experience demonstrates that Urfalogy successfully bridges technology
development and practical application requirements. Results validate that integrated
artificial intelligence and human expert systems can effectively support urban farming
adoption in Indonesian urban contexts characterized by land scarcity, capital limitations,
and technology access constraints.

JBIOGRITech. 2025, VOLUME 2, ISSUE 1 https://doi.org/10.61511/jbiogritech.v2i1.2025.2545


https://doi.org/10.61511/jbiogritech.v2i1.2025.2545

Widjanarko et al. (2025) 12

3.5 Urban farming sustainability implications

The Urfalogy platform development and validation contributes to addressing
fundamental challenges of urban food security in Indonesia. Successful implementation of
Al powered spatial optimization, real time environmental monitoring, and integrated
knowledge support systems provides a technological foundation for scaling urban farming
beyond current limitations. The achievement of a high performing deep learning model and
functional integration of nine platform features demonstrates technical feasibility of
supporting urban agriculture through comprehensive technological systems. The platform's
potential impact on three primary urban farming constraints warrants detailed analysis.
First, the Al layout designer directly addresses spatial limitations by enabling optimization
of constrained urban environments. By analyzing specific environmental characteristics
including light intensity, ceiling height, and architectural features, the system enables
productive agriculture in spaces that would otherwise remain unutilized. The 90.01% recall
rate indicates that the system successfully identifies nearly all suitable agricultural spaces,
minimizing opportunity loss.

Second, the integrated e-commerce functionality reduces capital barriers by connecting
urban farmers with affordable input sources and premium market opportunities. By
reducing transaction costs and enabling direct producer to consumer relationships, the
platform improves economic returns on agricultural investment, making urban farming
more financially attractive to prospective practitioners. This economic improvement
addresses the youth participation barrier, as financial returns become more comparable to
alternative livelihood opportunities. Third, the comprehensive knowledge support system
combining automated analysis, expert consultation, and educational content addresses
technological and knowledge barriers limiting urban farming productivity. By providing
decision support for crop selection, health management, and environmental optimization,
the platform reduces knowledge deficits that currently constrain urban farmer success
rates. Integration with community knowledge networks builds social capital supporting
collective learning and shared problem-solving.

Beyond addressing immediate constraint domains, Urfalogy contributes to broader
sustainability objectives aligned with Sustainable Development Goal 11.3. The platform
supports inclusive urbanization by enabling previously excluded urban residents to engage
in productive food production. Participatory urban planning is enhanced through the data-
driven design approach that incorporates user preferences and local environmental
conditions rather than imposing generic solutions. The platform's capacity to supportboth
individual farmer productivity and community knowledge networks demonstrates
commitment to human development alongside technological advancement. The platform
development experience provides lessons relevant to scaling urban agriculture across
Indonesia. Technical feasibility of implementing advanced machine learning for agricultural
optimization with locally available data has been demonstrated. The acceptance of
technological solutions by target user populations, evidenced through high prototype
engagement rates, indicates cultural compatibility beyond technical feasibility. The success
of human centered design principles in creating accessible technology suggests that
effective urban agriculture support systems must integrate technological capability with
social and economic dimensions.

4. Conclusions

This research successfully developed and validated Urfalogy, an integrated artificial
intelligence-powered platform addressing critical constraints limiting urban farming
adoption in Indonesia. The primary contribution of this work lies in demonstrating that
comprehensive technological systems combining deep learning-based spatial optimization,
real-time environmental monitoring, expert consultation integration, and e-commerce
functionality can effectively support sustainable urban agriculture in land-scarce urban
environments. The achievement of a high performing deep learning model (mAP@0.5

JBIOGRITech. 2025, VOLUME 2, ISSUE 1 https://doi.org/10.61511/jbiogritech.v2i1.2025.2545


https://doi.org/10.61511/jbiogritech.v2i1.2025.2545

Widjanarko et al. (2025) 13

0.90715, recall 0.90011) coupled with successful implementation of nine integrated
platform features validates the technical feasibility and functional completeness of this
approach. These results establish that artificial intelligence and human expert systems can
work synergistically to overcome interconnected barriers of spatial limitation, capital
insufficiency, and technological inadequacy that currently constrain urban farming in
Indonesian cities.

The originality of this research extends beyond technical implementation to encompass
systemic understanding of urban farming challenges. Unlike fragmented approaches
addressing individual constraint dimensions, Urfalogy demonstrates that holistic platform
design integrating technological, economic, and knowledge-support dimensions produces
superior outcomes compared to single domain solutions. This system-level contribution
reflects complexity theory principles emphasizing emergent properties arising from
integrated components. The platform's successful integration of automated spatial analysis,
real-time monitoring, expert consultation, community knowledge networks, and market
linkage represents a paradigmatic shift in technological support for urban agriculture,
positioning technology as enabler of human decision making rather than replacement for
human expertise.

The implications for urban food security and sustainable development are substantial.
By enabling productive agriculture in previously unutilized urban spaces, optimizing
economic returns through market access, and reducing knowledge barriers through
integrated expert consultation and educational systems, Urfalogy provides a technological
foundation for scaling urban farming beyond current limitations. The platform's
achievement of 91% task completion rate during user testing and 89% consultation
satisfaction indicate strong user acceptance, suggesting cultural and practical viability of
technology-enabled urban agriculture. This technological solution contributes directly to
the achievement of Sustainable Development Goal 11.3 by supporting inclusive
urbanization and participatory urban planning while enhancing food security and
improving urban livelihood opportunities.

Future research directions include spatial expansion of platform validation to
additional Indonesian cities and Southeast Asian contexts, longitudinal assessment of urban
farmer outcomes including productivity and income improvements, integration of climate
adaptation features supporting agricultural resilience in contexts of environmental
variability, and investigation of community level impacts including food security outcomes
and social capital development among urban farming networks. The successful
development of Urfalogy provides the foundation for addressing persistent challenges of
urban food systems while demonstrating broader applicability of integrated technology
platforms to complex development challenges requiring simultaneous attention to
technological, economic, and social dimensions.
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