The role of vegetation in enhancing thermal comfort in open spaces: a study on the impact of temperature and humidity
DOI:
https://doi.org/10.61511/ineq.v1i2.2024.1845Keywords:
urban microclimate, vegetation cover, tree canopy, air temperature, green infrastructureAbstract
Introduction: Thermal comfort in outdoor urban spaces is largely shaped by microclimatic elements like air temperature, humidity, and wind speed, all of which are strongly influenced by vegetation. This study investigates how vegetation, especially tree canopies and vegetative cover, affect microclimate regulation and contributes to thermal comfort in urban settings. Methods: The research was carried out at the IPB Arboretum on August 28, 2024, using observational techniques over a three-hour timeframe. Tools such as a digital thermohydrometer and a mini weather station were employed to measure temperature, humidity, and wind speed, while vegetation mapping was used to classify canopy density. Findings: The analysis found that trees like Ficus benjamina can significantly lower air temperature and raise humidity beneath their canopies through processes such as evapotranspiration and interception of solar radiation. Areas with dense, overlapping canopies were observed to have noticeably cooler and more humid conditions, while areas with minimal vegetation showed characteristics typical of the Urban Heat Island (UHI) phenomenon. However, statistical regression did not reveal a significant correlation between canopy cover percentage and temperature or humidity, implying that other variable—like human presence or surface materials—may also play important roles. Conclusion: These results underline the ecological value of vegetation in moderating urban microclimates. Although canopy density alone may not directly correlate with climate indicators, strategically placing vegetation in city planning remains crucial for reducing heat stress and improving environmental quality in urban open spaces. Novelty/Originality: The novelty of this research lies in its focused examination of how specific tree species and canopy densities influence thermal comfort in an urban arboretum setting, using real-time, on-site environmental measurements.
References
Effendy, S., Bey, A., Zain, A.F.M., & Santoso, I. (2006). Peran Ruang Terbuka Hijau Perkotaan dalam Pemanfaatan Suhu Udara dan Pulau Panas Perkotaan. Dicontohkan oleh Wilayah Jabotabek. Agromet, 20 (1), 23-33. https://doi.org/10.29244/j.agromet.20.1.23-33
Fadhlurrahman, M. M. (2018). Pengaruh naungan pohon dengan perbedaan bentuk tajuk dan jarak dari pohon terhadap kenyamanan termal di Puspiptek Serpong. Universitas Indonesia.
Gill, S. E., Handley, J. F., Ennos, A. R., & Pauleit, S. (2007). Adapting cities for climate change: The role of green infrastructure. Built Environment, 33(1), 115–133. https://doi.org/10.2148/benv.33.1.115
Karyono, T. H. (2001). Teori dan acuan kenyamanan termal dalam arsitektur. Catur Libra Optima.
Kakon, A. N., Nobuo, M., Kojima, S., & Yoko, T. (2010). Assessment of thermal comfort in respect to building height in a high-density city in the tropics. American Journal of Engineering and Applied Sciences, 3(3), 545–551. https://doi.org/10.3844/ajeassp.2010.545.551
Kurnia, R. F. A. (2016). Analisis indeks kenyamanan iklim: Studi kasus Taman Wisata Jatim Park 2 dan Karangkates. Institut Pertanian Bogor.
Hidayat, I. W. (2010). The ecological role of trees and their interactions in forming the microclimate amenity of the environment. Jurnal Bumi Lestari, 10(2), 182–190. https://ojs.unud.ac.id/index.php/blje/article/view/120
Nasution, A. I. (2019). Analisis pengaruh bentuk tajuk pohon dan jenis lantai di bawah tajuk pohon terhadap kenyamanan termal. Universitas Indonesia.
Oke, T. R. (2002). Boundary layer climates (2nd ed.). Routledge.
Smith-Tripp, S. M., Eskelson, B. N., Coops, N. C., & Schwartz, N. B. (2022). Canopy height impacts on the growing season and monthly microclimate in a burned forest of British Columbia, Canada. Agricultural and Forest Meteorology, 323, 109067. https://doi.org/10.1016/j.agrformet.2022.109067
Sadono, R. (2018). Prediksi lebar tajuk pohon dominan pada pertanaman jati asal kebun benih klon di Kesatuan Pemangkuan Hutan Ngawi, Jawa Timur. Jurnal Ilmu Kehutanan, 12(2), 127–141. https://doi.org/10.20886/jik.2018.12.2.127-141
Sharma, R. P., Vacek, Z., & Vacek, S. (2016). Individual tree crown width models for Norway spruce and European beech in Czech Republic. Forest Ecology and Management, 366, 208–220. https://doi.org/10.1016/j.foreco.2016.02.016
Quattrochi, D. A., Luvall, J. C., Rickman, D. L., Estes, M. G., Laymon, C. A., & Lo, C. P. (2000). A decision support information system for urban landscape management using thermal infrared data. Photogrammetric Engineering and Remote Sensing, 66(10), 1195–1207. https://www.cabidigitallibrary.org/doi/full/10.5555/20003016485
Voogt, J. A. (2002). Urban heat island: Causes and consequences of global environmental change. In D. A. Robinson & R. G. Bailey (Eds.), The encyclopedia of global environmental change (Vol. 3, pp. 660–666). John Wiley & Sons, Ltd.
Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4), 467–483. https://doi.org/10.1016/j.rse.2003.11.005
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2024 Buruh Ahwaludin, Desi Tri Wulandari, Maheswara Aulia, Teguh Muhammad Iskandar

This work is licensed under a Creative Commons Attribution 4.0 International License.