Yield and physical pulp properties of three Eucalyptus Pellita F. Muell clones at two active alkali concentrations: A study in tropical agriculture practices
DOI:
https://doi.org/10.61511/hjtas.v2i2.2025.1638Keywords:
Eucalyptus pellita, pulp properties, sulfate process, active alkali, clone performanceAbstract
Background: Efforts to enhance the genetic quality of Eucalyptus pellita F. Muell by PT. Riau Andalan Pulp and Paper included breeding several clones to optimize raw materials for pulp and paper production. Three clones—CEP06, CEP13, and CGP32—were selected to determine their potential based on pulp yield and physical properties. Methods: The wood samples from these clones were cooked using the sulfate process with active alkali concentrations of 13% and 15%, 25% sulfidity, a wood-to-liquor ratio of 1:4, a cooking temperature of 170°C, and a cooking duration of 2 hours. Pulp yields, kappa numbers, and pulp properties, including tear, burst, and tensile indices, were analyzed. Statistical analysis employed Analysis of Variance (ANOVA) and Honestly Significant Difference (HSD) tests. Findings: The clones CEP13 and CGP32 achieved higher screened yields at 38.34% and 38.26%, respectively, compared to CEP06. However, CEP06 demonstrated superior tear and burst indices of 6.36 mN·m²/g and 3.60 kPa·m²/g, respectively. The highest tensile index of 41.75 Nm/g was observed in the CGP32 clone. Significant differences were found among the clones in terms of screened yield, kappa number, and certain pulp properties. Additionally, active alkali concentrations significantly affected the screened yield and kappa number, with interactions between clones and alkali concentrations significantly influencing kappa numbers. Conclusion: The CEP06 clone is recommended for pulp and paper production due to its favorable pulp properties, making it an excellent raw material candidate. Novelty/Originality of this article: This study highlights the potential of Eucalyptus pellita clones in optimizing raw materials for pulp and paper industries, emphasizing their specific advantages and contributions to sustainable forestry practices.
References
Aiso, H., Hiraiwa, T., Ishiguri, F., Iizuka, K., Yokota, S., & Yoshizawa, N. (2013). Anatomy and lignin distribution of "compression-wood-like reaction wood" in Gardenia jasminoides. IAWA Journal, 34(3), 262–272. https://doi.org/10.1163/22941932-00000032
Anggraeny, T., & Marsoem, S. N. (2013). Pengaruh konsentrasi alkali aktif terhadap rendemen dan sifat fisik pulp sulfat pada kayu teras dan gubal eukaliptus pelita (Eucalyptus pellita). Thesis. Universitas Gadjah Mada.
Anthonio, F., & Antwi-Boasiako, C. (2017). The characteristics of fibres within coppiced and non-coppiced rosewood (Pterocarpus erinaceus Poir.) and their aptness for wood- and paper-based products. Pro Ligno, 13(2), 27–39.. https://www.proligno.ro/en/articles/2017/201702.htm
Aprianis, Y., & Rahmayanti, S. (2009). Dimensi serat dan nilai turunan seratnya dari tujuh jenis kayu asal Provinsi Jambi. Jurnal Penelitian Hasil Hutan, 29(1), 11–20. https://doi.org/10.20886/jphh.2009.27.1.11-20
Bajpai, P. (2012). Biotechnology for pulp and paper processing. Springer Science & Business Media.
Biermann, C. J. (1996). Handbook of pulping and papermaking (2nd ed.). Academic Press.
Casey, J. P. (1980). Pulp and paper: Chemistry and chemical technology (Vol. 1: Pulping and bleaching, 3rd ed.). Wiley-Interscience.
Darmawan, A., Irawan, B., Ni'mah, H., Roesyadi, A., & Kurniawansyah, F. (2020). Delignification of abaca fiber (Musa textilis) as potential substitute for Eucalyptus pellita. IOP Conference Series: Materials Science and Engineering, 857, 1–8. https://doi.org/10.1088/1757-899X/857/1/012021
Directorate General of Forestry. (1976). Indonesian forestry vademecum. Directorate General of Forestry, Ministry of Agriculture
Guimarães, L. M. S., Titon, M., Lau, D., Rosse, L. N., Oliveira, L. S. S., Rosado, C. C. G., Christo, G. G. O., & Alfenas, A. C. (2010). Eucalyptus pellita as a source of resistance to rust, ceratocystis wilt and leaf blight. Crop Breeding and Applied Biotechnology, 10, 124–131. http://dx.doi.org/10.12702/1984-7033.v10n02a04
Harwood, C. E. (1998). Eucalyptus pellita: An annotated bibliography. CSIRO Forestry and Forest Products.
Horn, R. A. (1978). Morphology of pulp fiber from hardwood and influence on paper strength. U.S. Department of Agriculture.
Kardiansyah, T., & Marsoem, S. N. (2018). Dissolving pulp tiga klon akasia hibrida (Acacia mangium x Acacia auriculiformis) dari Wonogiri, Jawa Tengah. Thesis. Gadjah Mada, Yogyakarta.
Kartikaningtyas, D., Nirsatmanto, A., Sunarti, S., Setyaji, T., Handayani, B. R., & Surip. (2020). Trends of genetic parameters and stand volume productivity of selected clones of Eucalyptus pellita observed in clonal trials in Wonogiri, Central Java. IOP Conference Series: Earth and Environmental Science, 522. https://doi.org/10.1088/1755-1315/522/1/012005
Kim, N. T., Ochiishi, M., Matsumura, J., & Oda, K. (2008). Variation in wood properties of six natural acacia hybrid clones in Northern Vietnam. Journal of Wood Science, 54, 436–442. https://doi.org/10.1007/s10086-008-0970-3
Labosky, P., Bowersox, T. W., & Blankenhorn, P. R. (1983). Kraft pulp yields and paper properties obtained from first and second rotations of three hybrid poplar clones. Wood and Fiber Science, 15(1), 81–89. https://wfs.swst.org/index.php/wfs/article/view/132.
Lukmandaru, G., Marsoem, S. N., & Siagian, R. M. (2002). Kualitas kayu nilotika (Acacia nilotica) sebagai bahan baku pulp. Prosiding Seminar Nasional V MAPEKI, 397–402. [Unpublished Paper]
Lukmandaru, G. (2018). Pengaruh penambahan antrakinon terhadap sifat pulp dan lindi hitam proses sulfat pada kayu karet. Prosiding Seminar Nasional Masyarakat Peneliti Kayu Indonesia XX, 226–233. [Unpublished Paper]
Marsoem, S. N. (2012). Buku Ajar Pulp dan Kertas. Fakultas Kehutanan Universitas Gadjah Mada.
Menucelli, J. R., Amorim, E. P., Freitas, M. L. M., Zanata, M., Cambuim, J., de Moraes, M. L. T., Yamaji, F. M., Júnior, F. G. S., & Longui, E. L. (2019). Potential of Hevea brasiliensis clones, Eucalyptus pellita, and Eucalyptus tereticornis wood as raw materials for bioenergy based on higher heating value. BioEnergy Research, 12, 992–999. https://doi.org/10.1007/s12155-019-10040-9
Ramirez, M., Rodriguez, J., Balocchi, C., Peredo, M., Elissetche, J. P., Mendonça, R., & Valenzuela, S. (2009). Chemical composition and wood anatomy of Eucalyptus globulus clones: Variations and relationships with pulpability and handsheet properties. Journal of Wood Chemistry and Technology, 29(1), 43–58. https://doi.org/10.1080/02773810802626944
Roliadi, H., Dulsalam, & Anggraini, D. (2010). Penentu daur teknis optimal dan faktor eksploitasi kayu hutan tanaman jenis Eucalyptus hybrid sebagai bahan baku pulp. Jurnal Penelitian Hasil Hutan, 28(4), 332–357. https://doi.org/10.20886/jphh.2010.28.4.332-357
Sixta, H. (2006). Handbook of pulp. Wiley-VCH Verlag.
Sharma, S. K., Shukla, S. R., Shashikala, S., & Poornima, V. S. (2015). Axial variations in anatomical properties and basic density of Eucalyptus urograndis hybrid (E. grandis × E. urophylla) clones. Journal of Forestry Research, 26(3), 739–744. https://doi.org/10.1007/s11676-015-0091-8
Shmulsky, R., & Jones, P. D. (2019). Forest products and wood science: An introduction (7th ed.). Wiley-Blackwell.
Sumardi, I., Hadiyane, A., Rumidatul, A., & Melani, L. (2020). Characteristics of empty palm bunch fibers as alternative pulp material. American Journal of Applied Sciences, 17, 129–134. https://doi.org/10.3844/ajassp.2020.129.134
Syafii, W., & Siregar, I. Z. (2006). Sifat kimia dan dimensi serat kayu mangium (Acacia mangium Willd.) dari tiga provenans. Journal Tropical Wood Science & Technology, 4(1). https://doi.org/10.51850/jitkt.v4i1.286
Takeuchi, R., Wahyudi, I., Aiso, H., Ishiguri, F., Istikowati, W. T., Ohkubo, T., Ohshima, J., Iizuka, K., & Yokota, S. (2016). Wood properties related to pulp and paper quality in two Macaranga species naturally regenerated in secondary forests, Central Kalimantan, Indonesia. TROPICS, 25(3), 107–115. https://doi.org/10.1007/s10457-017-0171-9
TAPPI T404 OM-92. (1992). TAPPI test methods: Tensile breaking strength and elongation of paper and paperboard (using pendulum type tester). TAPPI Press.
Veenin, T., Fujita, M., Nobuchi, T., & Siripatanadilok, S. (2005). Radial variations of anatomical characteristics and specific gravity in Eucalyptus camaldulensis clones. IAWA Journal, 26(3), 353–361. https://doi.org/10.1163/22941932-90000116
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Rian Palimirmo Adi, Sri Nugroho Marsoem, Ganis Lukmandaru

This work is licensed under a Creative Commons Attribution 4.0 International License.