Effect of cutting age and auxin concentration on growth of pinto peanut (Arachis pintoi)

Authors

  • Junaidi Muntoyib Study Program of Agronomy and Horticulture, Graduate School, IPB University (Bogor Agricultural University), Jl. Meranti Kampus IPB Darmaga, Bogor 16880, Indonesia

DOI:

https://doi.org/10.61511/hjtas.v2i1.2024.1053

Keywords:

pinto peanuts, cover crops, soil conservation, biomulch, ornamental plants

Abstract

Background: Pinto peanuts (Arachis pintoi) are known as versatile cover crops for soil conservation, biomulch, and ornamental plants. These leguminous plants rarely produce seeds, so they are commonly propagated vegetatively, resulting in low efficiency of seedling production and availability of cuttings. The aim of this study was to determine the effect of cutting age and auxin application on the growth of pinto peanut. Methods: This experiment used a complete randomized block factorial design. The first factor was the age of the cuttings (stolons) with three levels (young, intermediate, old). Each cutting had three nodes, with young cuttings measured from the tip, intermediate cuttings measured from the fourth node, and old cuttings measured from the seventh node. The second factor was the concentration of the commercial auxin product ROOTONE F (0 ppm, 500 ppm, 1000 ppm, 1500 ppm, 2000 ppm). Findings: The results showed that the difference in cutting age significantly affected the number of leaves (at 10 and 50 days after planting), plant length (at 10 to 50 days after planting), number of branches (at 30 to 50 days after planting), and canopy area. Differences in auxin concentration only significantly affected plant length from 10 to 30 days after planting. The interaction between cutting age and auxin concentration was significant only for the number of leaves at 10 to 20 days after planting and plant length at 50 days after planting. Conclusion: The highest values for the observed parameters were consistently obtained by intermediate cuttings followed by tip cuttings, which are therefore recommended as planting material for pinto peanut propagation. Novelty/Originality of this article: This study uniquely determined the effectiveness of pinto peanuts cuttings based on internode length, revealing that intermediate cuttings are the best material for its propagation, especially when treated with specific auxin concentrations, consistently outperformed tip and old cuttings in promoting optimal growth, offering a practical strategy to enhance vegetative propagation efficiency.

References

Aloni, R., Aloni, E., Langhans, M., & Ullrich, C. I. (2006). Role of auxin in regulating Arabidopsis flower development. Planta, 223(2), 315-328. https://doi.org/10.1007/s00425-005-0088-9

Andianingsih, N., Rosmala, A., & Mubarok, S. (2021). The effect of auxin and giberellin on the growth of tomato (Solanum lycopersicum L.) var. Aichi First on medium plain. Agroscript, 3(1), 48-56. https://doi.org/10.36423/agroscript.v3i1.531

Azêvedo, H. S., Sousa, A. C., Martins, K., Oliveira, J. C., Yomura, R. B., Silva, L. M., Valls, J. F., Assis, G. M., & Campos, T. (2016). Genetic diversity of the forage peanut in the Jequitinhonha, São Francisco, and Paranã River valleys of Brazil. Genetics and Molecular Research: GMR, 15(3). https://doi.org/10.4238/gmr.15038601

Benjamins, R., & Scheres, B. (2008). Auxin: The looping star in plant development. Annual Review of Plant Biology, 59, 443-465. https://doi.org/10.1146/annurev.arplant.58.032806.103805

Beyl, C. A., & Trigiano, R. N. (2016). Plant propagation concepts and laboratory exercises (3rd ed.). CRC Press.

Blythe, E. K., Sibley, J. L., Tilt, K. M., & Ruter, J. M. (2007). Methods of auxin application in cutting propagation: A review of 70 years of scientific discovery and commercial practice. Journal of Environmental Horticulture, 25(3), 166-185. https://doi.org/10.24266/0738-2898-25.3.166

Chandler, J. W. (2009). Local auxin production: A small contribution to a big field. BioEssays, 31(1), 60-70. https://doi.org/10.1002/bies.080146

Chozin, M. A., Nuryana, F. I., Guntoro, D., Sumiahadi, A., Badriyah, R. N., & Wibowo, A. P. (2018). Potency of Arachis pintoi Krap. & Greg. as biomulch in the tropical upland agriculture. IOP Conference Series: Earth and Environmental Science, 196(1), 012011. https://doi.org/10.1088/1755-1315/196/1/012011

Ćosić, T., & Raspor, M. (2022). The role of auxin and cytokinin signaling components in de novo shoot organogenesis. In Aftab, T. (Ed.), Auxins, cytokinins and gibberellins signaling in plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-031-05427-3_3

Davies, P.J. (2010). The Plant Hormones: Their Nature, Occurrence, and Functions. In Davies, P.J. (eds) Plant Hormones. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2686-7_1

Davis, T. D., Haissig, B. E., & Sankhla, N. (Eds.). (1989). Adventitious root formation in cuttings. Advances in Plant Science Series, Volume 2. Tree Physiology, 5(3), 401–401. https://doi.org/10.1093/treephys/5.3.401

de Klerk, G. J., Guan, H., Huisman, P., & Marinov, S. (2011). Effects of phenolic compounds on adventitious root formation and oxidative decarboxylation of applied indoleacetic acid in Malus ‘Jork 9’. Plant Growth Regulation, 63, 175-185. https://doi.org/10.1007/s10725-010-9555-9

de Sousa-Machado, I. B., Felippe, T., Garcia, R., Pacheco, G., Moreira, D., & Mansur, E. (2018). Total phenolics, resveratrol content and antioxidant activity of seeds and calluses of pinto peanut (Arachis pintoi Krapov. & W.C. Greg.). Plant Cell, Tissue and Organ Culture, 134, 491-502. https://doi.org/10.1007/s11240-018-1438-1

Ding, Z., Wang, B., Moreno, I., Duplakova, N., Simon, S., Carraro, N., Reemmer, J., Pěnčík, A., Chen, X., Tejos, R., Skupa, P., Pollmann, S., Friml, J., Rolcik, J., & Ljung, K. (2012). ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nature Communications, 3, 941. https://doi.org/10.1038/ncomms1941

Druege, U., Franken, P., & Hajirezaei, M. R. (2016). Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00381

Ellis, C. M., Nagpal, P., Young, J. C., Hagen, G., Guilfoyle, T. J., & Reed, J. W. (2005). Auxin response factor1 and auxin response factor2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development, 132(20), 4563-4574. https://doi.org/10.1242/dev.02012

Estornell, L. H., Agustí, J., Merelo, P., Talón, M., & Tadeo, F. R. (2013). Elucidating mechanisms underlying organ abscission. Plant Science, 199-200, 48-60. https://doi.org/10.1016/j.plantsci.2012.10.008

Febrianto, Y., & Chozin, M. A. (2014). Effect of density and type of cutting on the coverage of Arachis pintoi as biomulch on tomatoes cultivation. Bul. Agrohorti, 2(1), 37-41. https://doi.org/10.29244/agrob.2.1.37-41

Gaspar, T., Kevers, C., Faivre-Rampant, O., Crèvecoeur, M., Penel, C., Greppin, H., & Dommes, J. (2003). Changing concepts in plant hormone action. In Vitro Cellular & Developmental Biology. Plant, 39(2), 85-106. http://www.jstor.org/stable/4293578

Goh, C. H., Ko, S. M., Koh, S., Kim, Y. J., & Bae, H. J. (2012). Photosynthesis and environments: Photoinhibition and repair mechanisms in plants. Journal of Plant Biology, 55, 93-100. https://doi.org/10.1007/s12374-011-9195-2

Hartmann, H. T., Kester, D. E., Davies, F. T., & Geneve, R. L. (2011). Plant propagation: Principles and practices (8th ed.). Prentice Hall.

Hujiser, P., & Schmid, M. (2011). The control of developmental phase transitions in plants. Development, 138(19), 4117-4129. https://doi.org/10.1242/dev.063511

Leakey, R. R. B. (2004). Physiology of vegetative reproduction. In J. Burley, J. Evans, & J. A. Youngquist (Eds.), Encyclopaedia of forest sciences (pp. 1655-1668). Academic Press.

Lee, Z., Kim, S., Choi, S. J., Joung, E., Kwon, M., Park, H. J., & Shim, J. S. (2023). Regulation of flowering time by environmental factors in plants. Plants, 12(3680). https://doi.org/10.3390/plants12213680

Liu, Y., Lan, X., Hou, H., Ji, J., Liu, X., & Lv, Z. (2024). Multifaceted ability of organic fertilizers to improve crop productivity and abiotic stress tolerance: Review and perspectives. Agronomy, 14(6), 1141. https://doi.org/10.3390/agronomy14061141

McSteen, P. (2010). Auxin and monocot development. Cold Spring Harbor Perspectives in Biology, 2(3), a001479. https://doi.org/10.1101/cshperspect.a001479

Müller, D., & Leyser, O. (2011). Auxin, cytokinin and the control of shoot branching. Annals of Botany, 107(7), 1203-1212. https://doi.org/10.1093/aob/mcr069

Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytologist, 182(3), 565-588. https://doi.org/10.1111/j.1469-8137.2009.02830.x

Rademacher, W. (2015). Plant growth regulators: Backgrounds and uses in plant production. Journal of Plant Growth Regulation, 34(4), 845-872. https://doi.org/10.1007/s00344-015-9541-6

Rahman, M. M., Alam, M. S., Islam, M. M., Kamal, M. Z. U., Rahman, G. K. M. M., Haque, M. M., Miah, M. G., & Biswas, J. C. (2022). Potential of legume-based cropping systems for climate change adaptation and mitigation. In Meena, R. S., & Kumar, S. (Eds.), Advances in legumes for sustainable intensification (pp. 381-402). https://doi.org/10.1016/B978-0-323-85797-0.00030-6

Sachs, T. (1991). Pattern Formation in Plant Tissues. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511574535

Sales, R. M. P., Fries, D. D., Bonomo, P., Pires, A. J. V., Campos, C. N., Brito, P. H. R., Pereira, I. S., & Santos, J. da S. (2013). Effect of water stress on the growth of Arachis pintoi plants under different nitrogen levels. Revista Brasileira De Zootecnia, 42(3), 149–154. https://doi.org/10.1590/S1516-35982013000300001

Sauer, M., Robert, S., & Kleine-Vehn, J. (2013). Auxin: Simply complicated. Journal of Experimental Botany, 64(9), 2565-2577. https://doi.org/10.1093/jxb/ert139

Sosnowski, J., Truba, M., & Vasileva, V. (2023). The impact of auxin and cytokinin on the growth and development of selected crops. Agriculture, 13(3), 724. https://doi.org/10.3390/agriculture13030724

Sousa, I., Garcia, R., Valls, J., Pacheco, G., & Mansur, E. (2024). Arachis pintoi Krapov. & W.C. Greg.–A multifunctional legume. Grass and Forage Science, 79(3), 343-352. https://doi.org/10.1111/gfs.12674

Spaepen, S. (2015). Plant hormones produced by microbes. In Lugtenberg, B. (Ed.), Principles of plant-microbe interactions. Springer, Cham. https://doi.org/10.1007/978-3-319-08575-3_26

Sumiahadi, A., Chozin, M. A., & Guntoro, D. (2019). Effectiveness of Arachis pintoi Karp. & Greg. as biomulch to control weeds on maize cultivation. International Journal of Innovative Approach in Agricultural Research, 3(4), 680-689. https://doi.org/10.29329/ijiaar.2019.217.14

Susilo, D. E. H. (2015). Identification of constanta value of leaf shape for leaf area measurement using length cross width of leaf of horticulture plant in peat soil. Anterior Jurnal, 14(2), 139-146. https://doi.org/10.33084/anterior.v14i2.178

Suwarto, & Hariyadi, A. (2020). Growth and fruit panicle responses of shrub pepper (Piper nigrum L.) to bio-mulch. IOP Conference Series: Earth and Environmental Science, 418(1), 012050. https://doi.org/10.1088/1755-1315/418/1/012050

Taiz, L., & Zeiger, E. (2010). Plant physiology (5th ed.). Sinauer Associates.

Thang, P. T., Vien, N. V., Anh, L. H., Xuan, T. D., Duong, V. X., Nhung, N. T., Trung, K. H., Quan, N. T., Nguyen, C. C., Loan, L. T. K., Khanh, T. D., & Ha, T. T. T. (2023). Assessment of allelopathic activity of Arachis pintoi Krapov. & W.C. Greg as a potential source of natural herbicide for paddy rice. Applied Sciences, 13(8268). http://dx.doi.org/10.3390/app13148268

Ugrenović, V., & Filipović, V. (2017). Cover crops: Achievement of sustainability in the ecological systems of agriculture. In A. Jean Vasile & D. Nicolò (Eds.), Sustainable entrepreneurship and investments in the green economy (pp. 257-281). IGI Global. https://doi.org/10.4018/978-1-5225-2075-7.ch009

Valencia, K. J. E., Castillo, Á. R., Ruden, D. A., & Burkart, S. (2021). Risk reduction and productivity increase through integrating Arachis pintoi in cattle production systems in the Colombian Orinoquía. Frontiers in Sustainable Food Systems, 5(666604). https://doi.org/10.3389/fsufs.2021.666604

Weiner, J., Andersen, S. B., Wille, W. K., Griepentrog, H. W., & Olsen, J. M. (2009). Evolutionary agroecology: The potential for cooperative, high density, weed-suppressing cereals. Evolutionary Applications, 3(5-6), 473-479. https://doi.org/10.1111/j.1752-4571.2010.00144.x

Zhang, Q., Gong, M., Xu, X., Li, H., & Deng, W. (2022b). Roles of auxin in the growth, development, and stress tolerance of horticultural plants. Cells, 11(17), 2761. https://doi.org/10.3390/cells11172761

Zhang, Y., Yu, J., Xu, X., Wang, R., Liu, Y., Huang, S., Wei, H., & Wei, Z. (2022a). Molecular mechanisms of diverse auxin responses during plant growth and development. International Journal of Molecular Sciences, 23(20), 12495. https://doi.org/10.3390/ijms232012495

Zhang, Y., Han, S., Lin, Y., Qiao, J., Han, N., Li, Y., Feng, Y., Li, D., & Qi, Y. (2023). Auxin transporter OsPIN1b, a novel regulator of leaf inclination in rice (Oryza sativa L.). Plants, 12(2), 409. https://doi.org/10.3390/plants12020409

Downloads

Published

2024-07-31

How to Cite

Muntoyib, J. (2024). Effect of cutting age and auxin concentration on growth of pinto peanut (Arachis pintoi). Holistic: Journal of Tropical Agriculture Sciences, 2(1), 17–30. https://doi.org/10.61511/hjtas.v2i1.2024.1053

Issue

Section

Articles

Citation Check