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ABSTRACT  
Background: Persistent Organic Pollutants (POPs) in hazardous waste (B3) continue to increase due to 
industrial activities and are difficult to degrade using conventional methods. POPs can accumulate in the 
environment and pose serious health risks, such as cancer and reproductive disorders. The PREC-Fenton system 
has been proposed to enhance the treatment efficiency of hazardous waste, particularly POPs, by combining 
chemical reactions with energy utilization from salinity gradient power. Methods: The research methodology 
comprises modeling approaches, research framework formulation, system definition, thermodynamic property 
regression, model construction, system simulation, financial feasibility study, and simulation result analysis. 
Findings: The research findings indicate that the PREC-Fenton system is capable of reducing POPs by up to 
1,038.8 kg/h with an efficiency of 99.99%, while producing 176.24 kg/h of clean water and generating 300.17 
kW of energy with a conversion efficiency of 40%. The integration with the ORC system increased the energy 
efficiency to 46.13%. System optimization using an Artificial Neural Network (ANN) with 13 neurons in a single 
hidden layer yielded the lowest RMSE values and high accuracy, with R² values exceeding 0.96 for the KP, KI, and 
KD parameters. The economic analysis showed a break-even point (BEP) at 44% capacity, a net present value 
(NPV) of USD 125,529, an internal rate of return (IRR) of 33.48%, and discounted payback period (DPP) of 5 
years. These results confirm that the PREC-Fenton system is efficient, cost-effective, and environmentally 
friendly. Conclusion: This study successfully developed an efficient PREC-Fenton system for hazardous waste 
(B3) treatment, achieving up to 99.99% degradation efficiency of POPs, clean water production of 176.24 kg/h, 
and energy generation of 300.17 kW. Novelty/Originality of this article: This article presents an innovative 
integration of the PREC-Fenton system with an adaptive control approach based on Artificial Neural Networks 
(ANN) to optimize the real-time degradation of POP-B3 waste. 

 

KEYWORDS: artificial neural network; hazardous waste (B3); persistent organic 
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1. Introduction 
 

Persistent Organic Pollutants (POPs) are hazardous chemical compounds recognized 
by the World Health Organization (WHO) and the US Environmental Protection Agency (US 
EPA) for their environmental persistence, bioaccumulation potential, and severe health and 
ecological risks.  These compounds exhibit high environmental persistence and strong 
lipophilicity, making them resistant to natural degradation processes and prone to 
bioaccumulation in the fatty tissues of living organisms (Pizzorno & Murray, 2021). Their 
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ability to travel long distances through atmospheric and oceanic pathways has led to their 
detection even in remote regions such as Antarctica, where no direct industrial activities 
exist (Kim et al., 2024). The accumulation of POPs has been closely associated with adverse 
health effects, including cancer, immune dysfunction, reproductive issues, and 
developmental risks in fetuses and newborns (Rokni et al., 2023). In Indonesia, rapid 
industrial growth paired with poor hazardous waste management has escalated POP-
containing waste release, posing a severe public health and environmental crisis (Xu et al., 
2021). In response, international initiatives like the Stockholm Convention have been 
introduced to regulate the production, use, and emissions of POPs globally. 

Despite these regulatory efforts, existing waste treatment technologies remain 
inadequate for effectively removing POPs (Matesun et al., 2024). Conventional industrial 
and physical treatment systems fail to degrade these stable pollutants, often only 
redistributing them to other environmental compartments without neutralizing their 
toxicity (Dapaah et al., 2022; Hassan et al., 2020). Advanced techniques such as Microbial 
Fuel Cells and ionizing radiation have been explored but are hindered by high costs and 
moderate operational efficiency, particularly at large scales (Balogun et al., 2020; Moallemi 
et al., 2020). Similarly, bioremediation-based alternatives, including microbial fuel cells, 
constructed wetlands, and genetic manipulation, although eco-friendly and adaptable to 
both aerobic and anaerobic conditions, suffer from slow pollutant removal rates, toxic 
byproduct formation, and high maintenance demands (Hassan et al., 2024; Hariram et al., 
2023). This situation highlights the urgent need for more efficient, adaptable, and 
sustainable treatment solutions capable of degrading POPs while supporting broader 
environmental objectives (Eisenmenger et al., 2020). 

One of the most promising alternatives is the Fenton-based Advanced Oxidation 
Process (AOP), which utilizes hydroxyl radicals (•OH) generated from hydrogen peroxide 
(H₂O₂) and ferrous ions (Fe²⁺) to rapidly oxidize and degrade organic pollutants (Rokni et 
al., 2023),  The reaction proceeds as follows (Jiménez-Bambague et al., 2023): 

 
𝐹𝑒2+  +  𝐻2𝑂2  →  𝐹𝑒3+  + ∙ 𝑂𝐻  +  𝑂𝐻−                   (Eq. 1) 

 
While effective, conventional Fenton systems face challenges in operational stability 

under dynamic conditions (Machado et al., 2023). To overcome these,  Photocatalytic 
Reverse Electrodylisis Cell (PREC) Fenton system was developed by integrating salinity 
gradients that accelerate hydroxyl radical generation, thereby enhancing degradation 
efficiency while enabling concurrent renewable energy production (Hariram et al., 2023; 
Eisenmenger et al., 2020). This innovation combines Photocatalytic Fuel Cell (PFC) and 
Reverse Electrodialysis (RED) technologies, where PFC removes pollutants from 
wastewater while simultaneously recovering electrical energy and RED exploits salinity 
gradients to produce additional current (Dubowski et al., 2024; Hajiali et al., 2022).  

The Reverse Electrodialysis (RED) system integrated within the PREC-Fenton process 
utilizes ammonium bicarbonate (NH₄HCO₃) solutions due to their ability to readily 
dissociate into NH₄⁺ and HCO₃⁻/CO₃²⁻ ions, which are essential for establishing a stable 
electrochemical gradient (Tian & Wang, 2022). In this setup, a concentrated NH₄HCO₃ 
solution functions as the ion donor, while a diluted NH₄HCO₃ solution acts as the ion 
acceptor (Leng et al., 2024). The difference in ion concentration drives the migration of 
cations and anions through selective membranes (Cation Exchange Membranes (CEM) and 
Anion Exchange Membranes (AEM)) from high to low concentrations, generating an 
electrical potential (Thakur & Malmali, 2022). This potential is subsequently converted into 
usable electrical energy via redox reactions occurring at the cathode and anode, where 
hydrogen peroxide (H₂O₂) is produced, Fe³⁺ is reduced to Fe²⁺, and water is oxidized to 
oxygen, supporting continuous pollutant degradation reactions (Wang et al., 2021). To 
maintain the efficiency of the RED process, the decomposed NH₄HCO₃ is regenerated 
through a distillation process that recovers NH₄⁺ and HCO₃⁻ components to produce fresh 
NH₄HCO₃, enabling a closed-loop operation. This continuous regeneration ensures 
sustained system performance, energy generation, and enhanced degradation of Persistent 
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Organic Pollutants (POPs) while producing environmentally benign byproducts such as 
oxygen and carbon dioxide (Tian & Wang, 2022). 
 

 
Fig. 1. Schematic diagram of PREC-Fenton 

 
The interaction between the cathode and anode in the PREC-Fenton system plays a 

crucial role in maintaining the balance of pollutant degradation. At the cathode, H₂O₂ is 
generated to drive the Fenton reaction and Fe³⁺ ions are reduced to Fe²⁺, while at the anode, 
water is oxidized to produce oxygen or directly oxidizes organic pollutants. This synergistic 
process supports continuous reactions and results in environmentally benign byproducts 
such as oxygen and carbon dioxide, thereby enhancing wastewater treatment efficiency 
(Tian & Wang, 2022; Wang et al., 2021). A detailed schematic of the reactions occurring in 
the PREC-Fenton system is presented in Table 1 below. 
 
Table 1. Fenton reactions 

Reactions Reaction Equations Description 
Cathode 
Reactions 

O2 + 2H+ + 2e− → H2O2 Electrochemical synthesis of H₂O₂ via two 
electron transfer (hydrogen peroxide 
electrosynthesis) 

O2 + 4H+ + 4e− → 2H2O Electrochemical synthesis of H₂O via four-
electron transfer 

2H2O2 → 2H2O + O2 Degradation of hydrogen peroxide (H₂O₂) 
into water and oxygen 

H2O2 →∗ HO2 + H+ + e− Decomposition of H₂O₂ into peroxide radicals 
(*HO₂ and electrons) 

∗ HO2 → O2 + H+ + e− Decomposition of peroxide radicals (*HO₂) 
into oxygen (O₂), protons, and electrons 

Anode 
Reactions 

2H2O → O2 + 4H+ + 4e− Oxygen evolution reaction (oxidation of 
water into oxygen, protons, and electrons) 

O2 + 2H+ + 2e− → H2O2 Oxygen generated at the anode is utilized for 
H₂O₂ generation at the cathode through 
diffusion 

R ∗ H2O → CO2 + H+ + e− Direct oxidation of organic pollutants 
(organic molecules oxidized into carbon 
dioxide, protons, and electrons) 

(Deb et al., 2023; Smara et al., 2024) 

 
To further optimize PREC-Fenton’s operational performance in dynamic environments, 

the integration of Artificial Neural Networks (ANNs) with Proportional-Integral-Derivative 
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(PID) controllers offers a highly adaptive control solution (Getachew Gizaw et al., 2023). 
ANNs enable real-time adjustment of system parameters by learning operational patterns 
from process data, overcoming the limitations of traditional, static control systems (Leng et 
al., 2022). When combined with PID controllers that stabilize process variables, this ANN-
PID hybrid ensures responsive, efficient, and reliable system operation even under 
fluctuating waste stream conditions. The application of this control architecture not only 
improves POP degradation performance but also enhances energy efficiency, positioning 
PREC-Fenton as an eco-intelligent, AI-driven water treatment technology capable of 
meeting both industrial wastewater management and environmental sustainability goals 
(Kasinathan et al., 2022).  

The PREC-Fenton method has proven effective in degrading pollutants such as 
tetracycline, phenol, and ampicillin, with efficiencies exceeding 80% (Chen et al., 2020). The 
efficiency of the PREC-Fenton system depends on several factors, including H₂O₂ 
concentration, temperature, type of catalyst, and stirring speed. Optimizing these 
parameters enhances the generation of hydroxyl radicals necessary for the degradation of 
POPs. The PREC-Fenton system has been widely applied across various industrial sectors, 
including coal gasification. This technology has demonstrated high effectiveness, with 
reductions of COD by 92.4%, total phenols by 86.1%, and NH₄⁺–N by 77.3% (Xu et al., 2019). 
Overall, PREC-Fenton offers an efficient, cost-effective, and sustainable solution for 
hazardous waste (B3) treatment. The photo-Fenton process at a semi-industrial scale 
exhibits a low environmental footprint, with greenhouse gas emissions ranging from 
approximately 2.71 to 0.762 kg CO₂eq per cubic meter of wastewater (Belalcázar-
Saldarriaga et al., 2019; Foteinis et al., 2019), making it an environmentally friendly option 
for small and medium-sized industries. 

The Thermolytic RED-Heat Engine (t-RED-HE) is then added to the system so that  
utilizes salinity gradients to generate electricity while simultaneously using low-grade 
waste heat to regenerate ammonium bicarbonate (NH₄HCO₃) solutions. This regeneration 
enables the solution to be reused in the Reverse Electrodialysis (RED) cycle, thereby 
improving the system's efficiency and sustainability (Tian & Wang, 2022). Unlike 
conventional RED systems that rely solely on salinity gradients, the t-RED-HE integrates 
thermal energy recovery from waste heat, making the system more energy-efficient and 
environmentally friendly (Leng et al., 2024). This technology offers a more efficient solution 
for sustainable applications such as PREC-Fenton, which combines pollutant degradation 
with electricity generation (Giacalone et al., 2020). 
 
2. Methods 
 
2.1 Research approach 
 

This research employs a numerical simulation approach using Aspen Plus V11 and 
Simulink MATLAB R2024a to model the PREC-Fenton and t-RED-HE systems. The 
simulation is designed to optimize the degradation of persistent organic pollutants (POPs) 
through electrochemically controlled redox mechanisms. The objective of the modeling is 
to understand the dynamic interactions among system components, estimate key 
operational parameters, and identify potential energy savings and process efficiencies. 

The initial data used in Aspen Plus and Simulink simulations are derived from 
calculations on three external components of the PREC-Fenton system, namely: t-RED-HE, 
the pumping system, and the regeneration unit. These calculations involve the configuration 
of critical variables such as electrochemical potential, electric current, and pump energy 
requirements. A detailed overview of the simulation approach is illustrated in Figure 2 
below. 
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Literature review on the 

effectiveness of PREC-

Fenton in degrading 

Persistent Organic Pollutants 

(POPs)

Initial data collection, 

including technical data and 

process parameters

Software selection, reaction 

model selection, parameter 

setting, and operation 

condition configuration

Verification of simulation 

model accuracy

Simulation execution to 

generate output data

Evaluating whether the 

simulation result align with 

the expectation or hypothesis

Literature Analysis System Modelling

Preliminary Validation Simulation Run Result Evaluation  
Fig. 2. Research approach 

 
2.2 Research framework 
 

This study employs an integrated multi-stage approach encompassing system design, 
simulation, and comprehensive analysis of results. The process begins with the steady-state 
design of the PREC-Fenton and t-RED-HE system models using Aspen Plus software, serving 
as the foundation for thermodynamic and process modeling. Once the base model is 
established, it is followed by electrochemical reaction simulations within the PREC-Fenton 
system to explore the reaction dynamics and mechanisms involved. 

The next stage involves evaluating the degradation of Persistent Organic Pollutants 
(POPs) through Fenton redox reactions, which form the core of hazardous waste (B3) 
treatment in this system. To enhance system performance, optimization is conducted using 
an Artificial Neural Network (ANN) algorithm, including sensitivity analysis of various 
operational parameters such as pH, temperature, and reagent concentrations to determine 
the optimal configuration. 

Additionally, this research includes an economic evaluation of the developed system, 
comprising calculations of Net Present Value (NPV), Internal Rate of Return (IRR), and 
Return on Investment (ROI) to assess its financial feasibility for implementation. For a more 
detailed overview of the research flow, refer to Figure 3, while the degradation rate 
determination presented in Figure 4 and design input flow in Aspen Plus are visually 
presented in Appendix 1. 
 

PAF/ORC and t-RED-HE 

operated under steady-state 

via simulation.

POPs degradation analyzed 

based on PREC-Fenton redox 

mechanisms.

Energy analysis performed 

on system output potential.

Economizer applied to 

optimize heat flow.

Sensitivity analysis 

conducted to find optimal 

conditions.

Financial feasibility study 

included NPV, IRR, ROI 

(pre/post-tax), DPP, and 

BEP.
 

Fig. 3. Research framework 
 

The Figure 4 illustrates the modeling process for the degradation of Persistent Organic 
Pollutants (POPs). It begins with establishing the basis for the degradation rate equation, 
followed by the modeling of POPs using specific parameters such as mass balance, 
concentrations (M, MX1, MX2), mass transfer coefficient (KLa), and stoichiometric 
coefficients. An ordinary differential equation (ODE) is then formulated to represent the 
degradation process of POPs. This ODE is solved using the Runge-Kutta method to derive a 
degradation rate equation. The results are simulated dynamically using Simulink to model 
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the system behavior over time, ultimately yielding insights into the dynamics of POP 
concentration reduction. 

Basis for the degradation 

rate equation

ODE solution using the 

Runge-Kutta method

Simulation using 

Simulink (dynamic 

modeling)

Modeling of POPs (Using 

parameters: M, MX1, MX2, 

mass balance, KLa, and 

stoichiometric coefficients)

ODE formulation for POP 

degradation

Dynamics of POP 

concentration reduction

Degradation rate 
equation for POPs

 
Fig. 4. Degradation rate determination scheme 

 
2.3 System optimization method 
 

The system optimization in this study aims to enhance energy efficiency in the PREC-
Fenton system while ensuring operational stability through an Artificial Neural Network 
(ANN)-based approach. For a better understanding of the energy optimization workflow, 
refer to Figure 6 below. 
 

Definition of the PREC-Fenton 

system

Efficiency testing of the PREC-

Fenton energy system

Integration of the PREC-Fenton 

system with ORC

Optimization of the PREC-

Fenton system through the 

reduction of external electricity 

supply

PREC-Fenton system with 46% 

energy efficiency and self-

sustained energy supply

Optimization of energy supply 

sources through integration with 

t-RED-HE

PREC-Fenton process efficiency: 

40%

Energy efficiency of the PREC-

Fenton system integrated with 

ORC: 46%

 
Fig. 6. Energy optimization scheme 

 
The PREC-Fenton system requires adequate energy input to operate optimally. The 

integration of an Organic Rankine Cycle (ORC) as an internal component of the PREC-Fenton 
system enables optimized energy utilization, thereby improving the overall efficiency of the 
system. A visualization of the standalone PREC-Fenton system is presented in Figure 7, 
followed by the integrated PREC-Fenton and ORC configuration in Figure 8, and the 
standalone ORC system illustrated in Figure 9. 
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Power: 303 kW
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H2 Heater

Hot Water
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H2O + Excess Air

Excess H2

Condensate H2O

80% Fuel Utilization 

70% Oxidant Utilization

455 kW; 40% Efficiency
Steam

Steam  
 

Fig. 7. System 1: Standalone PREC-Fenton baseline case 
(Wilailak et al., 2021) 

 
This process in Figure 7 illustrates the operation of a PREC-Fenton system for cogeneration, 
combining electricity and heat production. The system begins with ambient air (25 °C, 
1 bar) and hydrogen from a storage tank (25 °C, 1.3 bar) as input. Air is preheated to 66 °C 
via an air heater before entering the cathode, while hydrogen is preheated in two stages—
first to 58 °C and then to 145 °C—before entering the anode. Inside the PREC-Fenton, the 
anode operates at 190 °C with 80% fuel utilization, and the cathode at the same temperature 
with 77% oxidant utilization. The electrochemical reaction generates 303 kW of electric 
power and 455 kW of thermal energy, which is used to produce steam at 150 °C and 
4.76 bar, with a flow of 760 kg/h. Additionally, hot water and small amounts of excess 
hydrogen (5 kg/h) and exhaust air (977 kg/h) are released (Wilailak et al., 2021). The 
system efficiently recovers waste heat for steam and water generation, making it ideal for 
combined heat and power (CHP) applications. 
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Fig. 8. System 2: Integration of PREC-Fenton system with ORC 
(Wilailak et al., 2021) 

 
This diagram presents a schematic of a PREC-Fenton system used for combined heat 

and power generation. The system utilizes hydrogen (H₂) from a storage tank and ambient 
air as reactants. The air is preheated to 66 °C using an air heater before entering the cathode. 
Hydrogen at 25 °C and 1.3 bar is first heated to 145 °C using a hydrogen heater and then 
delivered to the anode. Within the fuel cell, the anode operates at 190 °C with 80% fuel 
utilization, and the cathode at the same temperature with 77% oxidant utilization. The 
electrochemical reaction generates 303 kW of power, and heat released (455 kW) is used to 
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produce steam at 150 °C and 4.76 bar, with a flow rate of 760 kg/h. The system also delivers 
hot water and excess hydrogen and air as byproducts (Wilailak et al., 2021). This integrated 
PREC-Fenton setup efficiently generates electricity and heat, making it suitable for 
cogeneration applications. 

Heat 

Source 

Steam 

150oC

Turbine

Superheater

Evaporator

Preheater

Hot 

water 

150
o
CPump

Condenser

Power

Heat 

Sink 

32oC

 
Fig. 9. ORC configuration 

 
In addition to integration with the ORC, the PREC-Fenton system utilizes an external t-

RED-HE module to enhance overall energy efficiency. The t-RED-HE technology is designed 
to harness salinity gradients and waste heat energy, generating additional power through 
an efficient electrodialysis process (Giacalone et al., 2020). The integration of the PREC-
Fenton–ORC system with t-RED-HE not only reduces energy waste but also supports the 
operational sustainability of the system by ensuring optimal utilization of available thermal 
resources. A visualization of the t-RED-HE system is presented in Figure 10. 

 

RED

STRIPPING

ABSORPTION

Electrical 
Energy

(a)
(b)

Low

High

Stripped Gas

Waste 
Heat

(c1)

(c2)

POWER UNIT
WATER 

REBALANCING

REGENERATION UNIT

 
Fig. 10. Conceptual diagram of the t-RED-HE system. (a) power unit (RED unit), (b) Water 

balancing, (c1) stripping unit, and (c2) condensation/absorption unit 

 
Optimization using an ANN-PID controller is employed to minimize prediction errors 

and enhance system stability during operation. The output of the ANN includes the optimal 
values of the PID control parameters—KP, KI, and KD—as well as the system error, which is 
used to evaluate model performance based on metrics such as Root Mean Square Error 
(RMSE) and the coefficient of determination (R²) (Smara et al., 2024). These metrics 
indicate the model’s accuracy in predicting and regulating system parameters in real time 
(Bestwick et al., 2023; Seborg et al., 2020). The basic scheme of the ANN is illustrated in 
Figure 11. 
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Fig. 11. Artificial neural network (ANN) diagram of the PREC-Fenton control system 

 

2.4 Economic analysis determination 
 

The economic evaluation includes key parameters such as Net Present Value (NPV), 
Internal Rate of Return (IRR), Discounted Payback Period (DPP), and Return on Investment 
(ROI) to assess the profitability and financial feasibility. The calculations for NPV, IRR, DPP, 
and ROI are based on the following formulas (Ranade et al., 2022): 
 

𝑁𝑃𝑉 = ∑
𝜋𝑡

(1+𝑖)𝑡
𝑛
𝑡=0      (Eq. 2) 

 

 

𝐼𝑅𝑅 = 𝑖1 +
𝑁𝑃𝑉1

(𝑁𝑃𝑉1−𝑁𝑃𝑉1)
(𝑖2 − 𝑖1)    (Eq. 3) 

 
 

𝐷𝑃𝑃 = 𝐴 +
𝐵

𝐶
     (Eq. 4) 

 
 

𝑅𝑂𝐼 = (
𝑁𝑒𝑡 𝑃𝑟𝑜𝑓𝑖𝑡

𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡
) 𝑥100%    (Eq. 5) 

 

The notation used in this analysis includes several key variables. The symbol πt 
represents the profit at time period t, where t indicates the specific time period under 
consideration. The variable i refers to the interest rate, expressed as a percentage. A denotes 
the last period in which the cumulative cash flow is negative, serving as a critical reference 
point for evaluating investment recovery. The variable B is defined as the absolute value of 
the cumulative net cash flow at the end of period A, highlighting the magnitude of the 
shortfall that needs to be recovered. Finally, C refers to the total cash inflow received during 
the period(s) subsequent to period A, which is essential in assessing the subsequent 
financial recovery or gain after the negative cash flow phase. 

 

Determining the 

investment scheme

(FCI, DMC, IMC)

Determining the revenue 

scheme

(rate, production 

volume, selling price, 

salvage value)

Financing scheme

(equity share, debt 

share, interest rate, 

payback period)

Cash flow analysis Break-even point (BEP)

Sensitivity analysisProject execution

Is the project 
considered 
profitable?

Yes

No  
Fig. 12. Schematic diagram of economic feasibility analysis determination 

 
In this simulation, the calculation of capital expenditure (CAPEX), operational 

expenditure (OPEX), and annual revenue projections serve as the basis for obtaining a 
comprehensive understanding of the system’s financial feasibility. The economic simulation 
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is carried out by referring to the energy production data and the degradation rates of 
persistent organic pollutants (POPs) obtained from previous technical simulations. For 
further insights into the flow and results of the economic analysis, readers are referred to 
Figure 12 above, which provides a detailed visualization of the financial assessment. 
 
3. Results and Discussion 
 
3.1 Degradation of persistent organic pollutants 
 
3.1.1 System flowsheet 
 

There are three main components in the overall system: PREC-Fenton, STACK PREC-
Fenton, and t-RED-HE. PREC-Fenton is a technology that integrates the Fenton reaction with 
Reverse Electrodialysis (RED), while the STACK PREC-Fenton serves as the core unit where 
the degradation reaction occurs using H₂O₂ and Fe²⁺ as catalysts. Meanwhile, t-RED-HE is 
an independent RED-based power generation system designed to sustainably support the 
operation of the PREC-Fenton process. 

 

 
Fig. 13. Flowsheet unit PREC-Fenton 

 
The Figure 14 illustrates a combined heat and power (CHP) system based on a fuel cell 

integrated with a thermal oil loop. Hydrogen and air are supplied at specified conditions 
and enter the fuel cell unit (B1), where electrochemical reactions produce both electricity 
and heat. The anode and cathode outlets exit through B2, with the anode stream showing 
no heat recovery, while the cathode stream passes through a heat exchanger (B9). Here, 
thermal oil absorbs 300 kW of heat, increasing in temperature from 183 °C to 187 °C. This 
recovered thermal energy is then distributed for power generation (333 kW) and heating 
(300 kW), demonstrating an efficient utilization of both electrical and thermal outputs in 
the system. 

 

 
Fig. 14. Flowsheet STACK PREC-Fenton 
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The flowsheet includes the main equipment used in the PREC-Fenton system. It 
illustrates the overall process flow, including the pathways of H₂O₂ and Fe²⁺ reactants, as 
well as the output streams of products and waste. Key components such as connecting 
pipelines and flow control mechanisms are also shown to provide a detailed view of the 
system. Further details are presented in Figure 13 for the PREC-Fenton Flowsheet, Figure 
14 for the STACK PREC-Fenton Flowsheet, and Figure 15 for the t-RED-HE Flowsheet. 

 

 
Fig. 15.  Flowsheet t-RED-HE 

 
3.1.2 System modeling results 
 

This modeling aims to estimate hydrogen production and the required membrane area. 
Hydrogen production in this system is considered a secondary product. The initial data from 
Tables 2 to 6 were used to define the PREC-Fenton system (Kwon et al., 2015; Raka et al., 
2020; Tarascon, J. M., & Simon, P., 2015). The modeling results indicate an electro-Fenton 
potential of 2.13 V with 30 unit cells. The hydrogen production rate reaches 0.83 mol 
H₂/m²·h, with a total current of 195.46 A, requiring a membrane area of 123.45 m². The 
pumping power is 0.00035 W/m², and the regeneration heat demand is 0.054 kW. This 
design serves as the basis for input variables in the Aspen Plus simulation. 
 
Table 2. Technical and economic input data for the PREC-Fenton model 

Parameters Symbol  Value  Unit  
Equivalent molar conductivity ⋀0 90  
Model parameter 1 A⋀ 41.55  
Model parameter 1 B⋀ 0.6023  
Model parameter 1 C⋀ 0  
Activity coefficient 1 g1 0.13661 I/mol 
Activity coefficient 1 g2 1.0007 I/mol 
Ideal gas constant R 8,314 J/(mol.K) 
Temperature T 293 K 
Concentrate solution concentration Chc 2 M 
Dilute solution concentration Cic 0.06 M 
Faraday’s constant F 96,485 C/mol 
Permselectivity of CEM/AEM ɑcem=ɑaem 0.753  
Fitting parameter r1 0.0002 Ωm2/m 
Inter-membrane distance δIc=δhc=δch  270 µm 
Porosity ε 0.8  
Anode voltage Ean(Fe2+→Fe3+) 0.77 V 
Cathode voltage Ecat (O2→H2O2) 0.68 V 
Activation factor ɑ 0.5  
Current (instantaneous) i 10 A/m² 
Exchange current i0 0.01 A/m³ 
Number of electrons transferred in 
the reaction 

Zan=Zcat 2 e⁻ transferred 
in the reaction 
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Cell resistance Rcell 1 Ω 
Cell current Icell 0.1 A 
Electrode resistance Rele 0.01 Ωm2 
Valence ions per mole of H₂ z 2 Z = 2 valence 

ions per mole 
of H₂ 

Valence ions per mole of POP z 1 Valence ions 
per mole of 
POP 

Losses losses 0.06  
Faradaic efficiency nF=10%-losses 0.94  
POP reaction rate rPOP 1x10-06 Mol/s 
Treated wastewater concentration mTW Cap 0.476 Kg/s 
Reaction conversion Konversi 0.990  
Wastewater capacity MWW Cap 0.480 Kg/s 
POP content %POP 0.001  
POP capacity mPOP Cap 0.00048 Kg/s 
Molecular weight of POP mwPOP 252,310 g/mol 
Number of membrane pairs N 10  
Dilute solution flow rate VIc 0.01 m/s 
Channel width w 0.1 m 
Water viscosity µ 0.0009 Pa.s 
Channel length I 0.1 m 
Water density ρw 0.997 Kg/l 
Density change per mass ∆𝜌

∆𝑚
 

0.0324 Kg2/(mol.l) 

Diffusivity coefficient (MEM) DAmB 2x10-12 m2/s 
Membrane thickness δmem 125 µm 
Input concentration C1 0.08 M 
RED stack Cmem=CRED stack 150 $/m2 
Regeneration system cost Cregen 3400 $/m3/h 
Pump system cost Cpump 300 $/kW 
Infrastructure cost Cinfra 1123 $/m2 
Discount factor r 0.06  
Plant life time t 20 Years 
Waste heat price Cheat 0.01 $/kWh 
Operating hours per year T0 8,000 h 
Hydrogen price CH2 3.59 $/kg 

 
The Table 3 (Raka et al., 2020) presents the input parameters used for scenario 

analysis of the PREC-Fenton system, comparing current, market, and future values. The 
concentration of the hydroxyl complex (Chc) is currently 2 M, with both market and future 
values projected at 2.6 M. The concentration of the ligand complex (Clc) starts at 0.06 M, with 
market and future estimations at 0.05 M and 0.07 M, respectively. The membrane transport 
coefficient (αcem = αaem) improves from 0.753 to 0.85 (market) and 0.95 (future), measured 
in Ωm²/M µm. The reaction rate constant (r1) is 0.0002 s-1 initially, with market and future 
values declining to 0.00004 s/year. Channel thickness (δch) is 270 μm currently and is 
expected to reduce to 100 μm in both market and future cases. The Faradaic efficiency (nF) 
is 0.94 at present, rising slightly to 0.95 (market) and 0.99 (future). Residence time (tres) 
drops from 70 s to 60 s (market) and 50 s (future), while membrane lifetime (tmem) increases 
from 4 to 7 and 10 years, respectively. These parameter shifts highlight efforts to enhance 
system efficiency, durability, and performance in the PREC-Fenton process. 
 
Table 3. Input parameters of the PREC-Fenton system for scenario study 

Parameters Current Value (p) Market Value (m) Future Value (f) Unit 
Chc 2 2.6 2.6 M  

Clc 0.06 0.05 0.07 M 

ɑcem = ɑaem 0.753 0.85 0.95 - 
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r1 0.0002 0.00004 0.00004 s-1 
ծch 270 100 100 μm 

nF 0.94 0.95 0.99 - 
tres 70 60 50 s 

tmem 4 7 10 year 

 
The AmB-RED system model evaluates key parameters under current, market, and 

future scenarios to assess performance improvements. Conductivity and activity 
coefficients vary with concentration, affecting electrochemical behavior. The unit cell’s open 
circuit voltage rises from 0.14 V to 0.19 V, while membrane and channel resistances 
significantly decrease, lowering total unit cell resistance. This boosts current density from 
47.42 to 246.60 A/m² and raises hydrogen production from 0.83 to 4.32 mol H₂/m²·h. The 
number of unit cells required drops from 30 to 23, and the membrane area is reduced from 
123.45 m² to 17.09 m², indicating improved system efficiency and compactness. 

 
Table 4. t-RED modeling 

Modeling of the AmB-RED System 
1. Solution Conductivity 

The equivalent conductivity of ammonium bicarbonate depends on its concentration and 
the molar conductance, which is temperature-dependent. Here A, B, C are model 
parameters used for fitting and referred from Bevacqua et al., (2017). The conductivity is 
calculated at a constant temperature of 293 K using the Jones-Dole equation. 
  Current 

Value (p) 
Market 
Value (m) 

Future Value (f) 

 

 

hc 58.27 56.01 56.01 

  lc 81.13 81.81 80.52 

  hc 116.54 145.63 145.63 mS/cm 
  lc 4.87 4.09 5.64 mS/cm 
2. Activity Coefficient of the Solution 

The activity coefficient depends on the molar concentration of the salt (Bevacqua et al., 
2017). The linear dependence of the activity coefficient on concentration is estimated using 
the ENTRL-RK thermodynamic package in Aspen Plus. 
 hc 1.27 1.36 1.36  

lc 1.01 1.01 1.01 
3. Unit Cell Open Circuit Potential 

The membrane potential (V) for a pair of cells (CEM, AEM) without considering any 
losses. The electrochemical potential difference across an Ion Exchange Membrane (IEM) 
placed between two solutions of different concentrations can be calculated using a 
modified Nernst equation. 

  0.14 0.18 0.19 V 
   

4. Area Specific Membrane Resistance 
The ohmic resistance of the membrane when immersed in solution, expressed as a function 
of ion concentration in the solution. 

 

 0.0004 0.0001 0.0001 Ωm2 

5. Channel Ohmic Resistance 
Resistance caused by the solution in the geometry of the channel and spacer. This 
resistance depends on concentration and is calculated using the molar conductivity of the 
salt. 
  0.0007 0.0003 0.0002 Ωm2 

 
 

    
 0.0000290 0.0000086 0.0000086 

6. Unit Cell Resistance 
The total cumulative resistance of the membrane and the channel within a single unit cell. 
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 0.0015 0.0005 0.0004 Ωm2 

7. Current Density at Peak Power 
The current density at peak power occurs when the operating potential is half of the open 
circuit voltage. Assuming constant resistance, the current density [A/m²] at peak power is 
calculated using Ohm’s law. 

   47.42 191.37 246.60 A/m² 
    

8. Actual Unit Cell Potential 
The actual potential across the RED unit cell decreases due to ohmic resistance within the 
unit. 

 

 0.07 0.09 0,09 V 

9. Required Potential for Photoelectro-Fenton 
  0.17 0.17 0.17 V 

 
V 

    
 2.13 2.13 2.13 

10. Number of Unit Cells 
The minimum number of unit cells required to be connected in series. 

   30 23 23 unit cell 
    

11. Stack Open Circuit Potential 
The open circuit potential of the RED stack (V), which drops when the RED device is 
connected to an external load 

  2.13 2.13 2.13 V 
12. Total Stack Resistance 

The total resistance in the stack, which includes the sum of all unit cell resistances and 
electrode resistance. 
  0.05 0.02 0.02 Ωm2 

13. Hydrogen Production Rate 

The theoretical amount of hydrogen (in moles) produced per unit time in the electrode-
electrolyte washing compartment of the RED stack. 
  0.83 3.36 4.32 Mol 

H2/m2.h     
14. Total Stack Current in Parallel 

  195.46 193.40 185.58 A 
    

15. Membrane Area 
  123.45 23.61 17.09 m2 

    

 
The pump system (Table 5) modeling focuses on fluid dynamics within the RED unit. 

The low-concentration (LC) solution flow rate remains constant at 0.0000022 m³/s across 
all scenarios, while the hydraulic diameter slightly decreases from 0.000402 m to 
0.000395 m due to tighter spacer packing. This leads to increased pressure drops (38.24 to 
55.51 Pa) and higher pumping power requirements (0.00035 to 0.00070 W/m²). The 
Reynolds number remains stable, indicating laminar flow conditions. In mass balance 
modeling, salt flux increases with concentration difference, from 5×10⁻⁴ to 
3×10⁻³ mol/s·m². The regeneration system modeling shows heat demand for ammonium 
bicarbonate removal ranging from 6.99 to 5.51 kWh/m³, with associated power dropping 
from 0.066 to 0.043 kW, reflecting improved thermal efficiency in future scenarios. 
 
Table 5. Pump system modeling, mass balance, and t-RED regeneration system 

Pump System Modeling 
1 Flow Rate 

The velocity of the low-concentration (LC) solution affects the double-layer resistance and, 
consequently, the power density. The flow rate m³/s for the low-concentration feed 
solution is estimated using the following equation: 
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  0.0000022 0.0000022 0.0000022  
2. Hydraulic Diameter 

Spacer filaments obstruct the flow through the channel, requiring additional pumping 
power. To estimate the influence of spacer filaments, the hydraulic diameter of the spacer-
filled channel can be calculated using the following equation: 

  0.000402 0.000398 0.000395 m 
    

3. Pressure Drop 
In the ideal case of fully developed laminar flow, the pressure drop (Pa) can be estimated 
using the Darcy-Weisbach equation as follows: 

   38.24 45.42 55.51 Pa 
    

4. Pumping Power 
The power [W/m²] required to overcome hydraulic resistance while pumping the feed 
solution through the channels strongly depends on the spacer porosity, as this determines 
the hydraulic radius that affects pressure drop. The required power can be calculated using 
the following equation: 

  0.00035         0.00048            0.00070 
 

   
5. Reynolds Number 

The Reynolds number (Re) for a wide channel corrected by spacer porosity is defined as 
the ratio of inertial forces to viscous forces in the fluid. For spacer-filled channels, the 
Reynolds number corrected by spacer porosity can be expressed as: 

  0.9989 0.9986 0.9993 kg/l 
    

  0.00446 0.00442 0.00438 
    

Mass Balance Modeling 
1. Salt Flux 

The concentration difference between adjacent channels drives the salt flux from the 
high-concentration channel to the low-concentration channel. 

 

 

 5x10-04               2x10-03                3x10-03 mol  
salt/s.m2     

Regeneration System Modeling 

1. Regeneration Heat Demand 
The total thermal power required to remove ammonium bicarbonate (NH₄HCO₃) salt from 
the low-concentration (LC) solution: 

  6.99 8.49 5.51 kWh/m3 

   
 

0.054 0.066 0.043 kW 

 
Table 6, retrieved from Bevacqua et al. (2017), presents the equation parameters (a₁ 

to a₇) used to model the behavior of the solution entering the stripper column as a function 
of its concentration (C₁). These parameters vary across four defined concentration 
intervals: 0.025 ≤ C₁ ≤ 0.1, 0.1 < C₁ ≤ 0.2, 0.2 < C₁ ≤ 0.56, and 0.56 < C₁ ≤ 2. Each range 
corresponds to a unique set of coefficients, indicating how the model adjusts to changes in 
input concentration. Notably, parameter values for a₃ and a₅ significantly decrease as the 
concentration increases, reflecting reduced values in high-concentration scenarios, which 
likely influence mass transfer or energy consumption characteristics in the stripper process. 

 
Table 6. Equation parameters as a function of the concentration of solution entering the stripper 
column 

Concentration Range a1 a2 a3 a4 a5 a6 a7 

0,025=<C1=0,1 12.115 0.260 261.787 0.615 297.460 0.252 0.478 

https://doi.org/10.61511/hcr.v2i1.2043


Dienulloh et al. (2025)    56 
 

 
HCR. 2025, VOLUME 2, ISSUE 1                                                                                                      https://doi.org/10.61511/hcr.v2i1.2043 
 

0,1<C1<=0,2 12.836 1.020 258.324 0.612 260.000 0.165 0.517 

0,2<C1<=0,56 13.195 0.686 60.592 0.667 55.934 0.687 0.212 

0,56<C1<=2 8.714 0.225 35.796 0.656 45.560 0.758 0.045 

 
3.1.3 PREC-fenton reaction modeling results 
 

The modeling results of the PREC-Fenton reaction provide mass balances for each 
system, namely the PREC-Fenton system, the STACK PREC-Fenton system, and the t-RED-
HE system. These mass balances represent the initial outcomes of the modeling process and 
serve as a foundation for further analysis. The simulation shows that H₂O₂ was input at a 
constant flow rate of 0.14318 mL·min⁻¹, with a total volume of 8.5909 mL (271.29 mmol) 
over a 3-hour period. Activation was carried out during the intervals of 0–15 minutes and 
30–75 minutes. The simulation results also illustrate output profiles including 
concentrations of POP, H₂O₂, and O₂, directly reflecting the process efficiency. Furthermore, 
the reaction dynamics are demonstrated through the transformation of organic species (M, 
MX1, MX2), radicals (R), and iron species (Fe²⁺, Fe³⁺). The transformations involve a 
stepwise conversion from M to MX1 and MX2, ultimately leading to an asymptotic decrease 
in POP concentration. The normalized concentration profiles indicate the interrelation 
between H₂O₂ concentration, iron species, and radicals (R), as well as the presence of 
unproductive H₂O₂ decomposition. The reaction modeling profiles of the PREC-Fenton 
system are shown in Figure 16. 
 

 
Fig. 16. Profile of POP degradation parameters over time: (a) H₂O₂ input, (b) Measured output of 
H₂O₂, POP, and O₂, (c) Species of persistent organic pollutants M, MX1, MX2, OHR, Fe²⁺, Fe³⁺, and 

iron, (d) Normalized profiles 
3.1.4 Degradation efficiency 
 

The simulation results indicate that the PREC-Fenton system is capable of degrading 
Persistent Organic Pollutants (POPs) with an efficiency of up to 99.99%, equivalent to 
1,038.8 kg/hour of pollutants successfully decomposed into harmless compounds. This 
outcome represents a significant improvement compared to conventional technologies such 
as coagulation-flocculation, which typically achieve only around 30% efficiency. This 
achievement makes the PREC-Fenton system highly relevant for industries requiring 
complex wastewater treatment solutions. In addition, the PREC-Fenton system is able to 
produce 176.24 kg/hour of clean water along with carbon dioxide as a by-product. This high 
efficiency is achieved through the optimization of key operational parameters such as H₂O₂ 
concentration, catalyst type, temperature, and stirring speed, all of which enhance the 
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formation of hydroxyl radicals as the primary agents of degradation. Detailed information 
on the reaction mechanisms can be found in Table 1: Fenton Reactions. 
 
3.2 System optimization 
 
3.2.1 System integration with ORC 
 

Based on the simulation and mass balance analysis, the PREC-Fenton system 
demonstrates an energy conversion efficiency of 40%. This efficiency was successfully 
increased to 46.13% through the integration of an Organic Rankine Cycle (ORC), 
contributing an additional 6.13%. The ORC utilizes waste heat to drive a working fluid 
through a turbine, thereby enhancing the overall system performance. These results 
indicate that the ORC integration not only boosts electricity generation but also reduces 
thermal emissions to the environment, thus supporting the overall sustainability of the 
process. Furthermore, this integration enables additional electricity production of up to 
300.17 kW. The system integration flowsheet with ORC can be seen in Figure 8. 
 
 
3.2.2 Integration with t-RED-HE 
 

The PREC-Fenton system is also integrated with a Thermolytic Reverse Electrodialysis 
Heat Engine (t-RED-HE) to further enhance the efficiency of wastewater treatment and 
energy production. The t-RED-HE technology utilizes salinity gradients and waste heat 
energy to generate additional electricity through the electrodialysis process. Integration 
with t-RED-HE enables the recovery and utilization of residual thermal energy from the 
Organic Rankine Cycle (ORC), thereby reducing energy waste and eliminating the need for 
external energy input for the PREC-Fenton system. 
 
3.2.3 Sensitivity analysis 
 

The sensitivity analysis in this study aims to evaluate the impact of various operational 
parameters on the performance of the t-RED-HE system, with a focus on process efficiency 
and operational cost reduction. The first parameter analyzed is the steam mass flow rate, 
where an increase in steam flow was found to significantly affect the system's pH. This pH 
reduction is attributed to the increased concentration of H⁺ ions generated from hydrolysis 
reactions, which can destabilize the system and thus require operational adjustments to 
maintain reaction equilibrium. The effect of steam mass flow rate on pH is illustrated in 
Figure 17 below. 

 

 
Fig 17. Sensitivity analysis graph of steam mass flow rate and NH₃ concentration on the pH of the 

low concentration lean stream in the t-RED unit 

 
Next, operating pressure also shows a significant influence on the system. An increase 

in pressure enhances NH₃ solubility in accordance with Henry’s Law, which increases the 
mass fraction of NH₃ and accelerates the dissolution of both NH₃ and CO₂ derived from the 
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decomposition of NH₄HCO₃. This positive effect contributes to higher regeneration flow 
concentrations, reducing the demand for fresh raw materials and directly lowering 
operational costs, as visualized in Figure 18. 
 

 
Fig 18. Sensitivity analysis graph of stage 1 pressure at ABS-01 on the NH₃ mass fraction in the high 

concentration RICHS (HC RICHS) stream 

 
The third parameter is temperature, which, although capable of accelerating reaction 

rates, also poses risks to overall system efficiency. Uncontrolled temperature increases may 
reduce the NH₃ mass fraction due to evaporation, ultimately decreasing the overall 
efficiency of the process if not offset by adjustments in other parameters. The effect of 
temperature on system performance is shown in Figure 19. 
 

 
Fig 19. Sensitivity analysis graph of FD-01 temperature within the flash temperature range 

 
Through this sensitivity analysis, the system is optimized by precisely controlling 

steam flow rate, pressure, and temperature to maintain the NH₄HCO₃ concentration 
equivalent to the initial input. This strategy enables effective regeneration and recirculation 
of materials without the need for continuous raw material replenishment, thereby 
enhancing process efficiency and significantly reducing operational costs. 
 
3.2.4 System optimization through PID controller and ANN integration 
 

Further optimization was conducted using an Artificial Neural Network (ANN) as a 
fitting tool for the PID controller parameters of the PREC-Fenton system. The results 
demonstrated excellent performance in predicting and optimizing the system parameters. 
The ANN model used in this study has three input variables, namely the KP, KI, and KD 
parameters of the PID controller, with 13 neurons in the hidden layer and one neuron in the 
output layer. The optimal number of neurons was determined by analyzing the relationship 
between the number of neurons and the RMSE on both the training and validation sets. For 
further illustration, Figures 20–24 below provide a graphical visualization of the neuron-
RMSE relationship analysis. 

https://doi.org/10.61511/hcr.v2i1.2043


Dienulloh et al. (2025)    59 
 

 
HCR. 2025, VOLUME 2, ISSUE 1                                                                                                      https://doi.org/10.61511/hcr.v2i1.2043 
 

 
(a)                                                                   (b) 

Fig. 20. Graphs of (a) yTrainTrue (symbol x) versus yValTrue (symbol o), and (b) the number of 
neurons in the hidden layer (horizontal axis) versus RMSE of the training set (blue line) and 

validation set (orange line). 

 
Based on the graph, it was found that the configuration of 13 neurons in a single hidden 

layer produced the lowest RMSE, with values of 0.4838 for the training set and 0.5160 for 
the validation set, corresponding to a deviation of approximately 5% within the output data 
range of 0 to 10. The ANN prediction results shown in Figure 21 demonstrate very high 
accuracy, with R² values for the KP, KI, and KD parameters—relative to the output error of 
the PREC-Fenton control system—of 0.96594, 0.96529, and 0.96753, respectively. These 
values indicate a strong linear relationship between the predicted and actual results. 
 

 
Fig 21. Regression graph of input variables KI (blue), KD (green), KP (red) vs. output variable error 

 
In addition, the model's best performance was achieved at the 18th epoch, with a 

minimum RMSE value of 0.0173, demonstrating the ANN’s strong capability in significantly 
minimizing error. Figures 22, 23, and 24 below provide a visual representation of the 
simulated error behavior. These results indicate that the combination of ANN and PID 
controller is capable of producing a lightweight and efficient predictive model with a very 
low error rate. 

 

 
Fig. 22. Training plot: Performance 
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Figure 23 displays the error distribution (error = target − output) of a neural network 
model using 20 bins. Blue bars represent training data, green bars represent validation data, 
and the orange line indicates zero error. Most errors are concentrated around zero, 
particularly between -0.025 and 0.025, suggesting high prediction accuracy with minimal 
deviation. The symmetric shape and absence of extreme outliers indicate good model 
performance, stable generalization, and no signs of overfitting. 

 

 
Fig. 23. Training plot: Error histogram 

 

This Figure 24 presents training performance metrics of a neural network across 21 
epochs. The top plot shows the gradient steadily decreasing to 0.00067855, indicating that 
the model is converging. The middle plot displays the learning rate parameter (mu), which 
quickly stabilizes at 0.0001 after an initial adjustment. The bottom plot shows the validation 
error (in log scale) increasing slightly after epoch 15, leading to 6 validation checks, which 
typically triggers early stopping to prevent overfitting. Overall, the training appears stable 
and well-regularized, with convergence reached by epoch 21. 

 

 
Fig. 24. Training plot: Training states 

 
3.3 Financial feasibility 
 

The economic modeling of the PREC-Fenton system includes estimations of initial 
investment, capital expenditure (CAPEX), annual operational costs (OPEX), and other 
relevant economic parameters. In addition, input data for the financial feasibility study of 
the PREC-Fenton project—such as projected revenue, expenditures, financing structure, 
and asset salvage value—are presented in detail in Table 7 below. This analysis provides a 
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foundation for comprehensively evaluating the project’s sustainability and profitability 
potential. 
 
Table 7. Input data for the financial feasibility study of the PREC-Fenton system 

Revenue 
TW Production Years 1–10 15,000 ton 
TW Production Years 11–20 13,500 ton 
TW Selling Price 0.006 $./kg 
Revenue Years 1–10 90,000 $./year 
Revenue Years 11–20 81,000 $./year 
Salvage Value 16,929 $. 
Cost 
Plant Capacity 15,000 ton/year  
CAPEX (Capital Expenditure) 0.02 $./kg  
Total Investment Cost 338,575 $.  
MRC (Maintenance and 
Replacement Cost) 

8,145 $./year with annual inflation 

OPEX (Operating Expenditure) 6,772 $./year with annual inflation 
General 
Interest Rate (MARR – 
Minimum Attractive Rate of 
Return) 

15% Per year 
 
 
per year Plant Lifetime 20 

Depreciation Period 20 
Depreciation Cost 16,082 
Income Tax 25% 
Inflation 1.84% 
Financing 
Equity Share 30%  
Debt Share 70%  
Net Equity 101,573 $. 
Net Debt 237,003 $. 
Loan Payback Period 10 year 
Loan Interest Rate 6% Per-year 

 
3.3.1 Break-even point analysis 
 

The break-even point (BEP) is reached at 44% of production capacity (6,666 tons out 
of a total of 15,000 tons per year). An increase in capacity by 36% beyond the BEP generates 
an additional profit of USD 8,000 per year. The visualization is presented in Figure 25 below, 
and the BEP calculation relative to production capacity is shown in Table 8 below. 
 

 
Fig. 25. Break-even point (BEP) graph based on production capacity 

 -

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

U
S

D
 (

In
 T

h
o
u

sa
n

d
s)

Production Capacity (%)

Fixed Cost

Variable Cost

Total Cost

Total Revenue

BEP

Profit Target

https://doi.org/10.61511/hcr.v2i1.2043


Dienulloh et al. (2025)    62 
 

 
HCR. 2025, VOLUME 2, ISSUE 1                                                                                                      https://doi.org/10.61511/hcr.v2i1.2043 
 

Table 8. Break-even point (BEP) calculation of the PREC-Fenton system 
Variable  Total cost Unit 
Fixed Cost  
Variable Cost  
Planned Selling Price 

10,000 $ 
$/kg 
$/kg 

0.005 
0.006 

Break-Even Point (in units)  
Break-Even Point (in USD) 

6,666,667 kg 
$ 40,000 

Target Profit 
Units Required to Sell 

8,000 $ 
kg 12,000,000 

Sales 
Fixed Cost 
Variable Cost 
Profit 
Total Capacity (20 Years) 

72,000 $ 
$ 
$ 
$  
kg 

10,000 
54,000 

8,000 
15,000,000 

Unit Fixed Cost Variable Cost Total Cost Total Revenue 
0% 
44% 
80% 
100% 

10,000 - 10,000 - 
10,000 30,000 40,000 40,000 
10,000 54,000 64,000 72,000 
10,000 67,500 77,500 90,000 

 
3.3.2 Sensitivity analysis on NPV and IRR 
 

Sensitivity analysis was conducted to identify several key variables. The simulation 
results indicate that selling price and CAPEX are the most sensitive variables affecting NPV 
and IRR. Pricing strategy plays a crucial role in maintaining profitability. The calculated 
sensitivity results for NPV and IRR are presented in Appendix 2 and Appendix 3 below, 
while the visual representation of the sensitivity analysis is shown in Figure 26 for NPV and 
Figure 27 for IRR. 
 

 
Fig. 26. NPV sensitivity analysis graph 
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profitability. 
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Fig. 27. IRR sensitivity analysis graph 

3.3.3 Cash flow analysis 
 

During the project’s operational period (20 years), the cash flow remains stable, with 
an annual depreciation of USD 16,082 and a salvage value of USD 16,929. The complete cash 
flow diagram is presented in Figure 28 below. 
 

 
Fig. 28. Cash flow diagram 

 
3.3.4 Key parameter analysis 
 

Based on the results of the financial evaluation, the project demonstrates strong 
feasibility indicators and holds promising potential for industrial-scale implementation. 
The Net Present Value (NPV) was recorded at USD 125,529, reflecting a substantial net gain 
over the project’s operational lifespan. This figure confirms that the incoming cash flows 
exceed both the investment and operational costs. Meanwhile, the Internal Rate of Return 
(IRR) reached 33.48%, significantly surpassing the Minimum Acceptable Rate of Return 
(MARR) of 15%, indicating a highly attractive investment return for potential stakeholders. 
 
Table 11. Financial feasibility study results of the PREC-Fenton system 

Parameters Calculated Requirements Criteria 
Internal Rate of Return (IRR) 33.48% 15% meet the criteria 
Discounted Payback Period (DPP) 5 10 meet the criteria 
Net Present Value (NPV) 125,529 + meet the criteria 
Break-Even Point (BEP) 44% 50% meet the criteria 
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Additionally, the Discounted Payback Period (DPP) reveals that the initial capital 
investment can be recovered within five years—well ahead of the planned 20-year 
operational period (Indrawan et al., 2020; Peng et al., 2021; Wassie & Ahlgren, 2023). These 
three key financial indicators consistently affirm that the project is not only financially 
viable but also offers high efficiency and long-term profit potential. Further details of the 
feasibility study and financial calculations are provided in Table 11 and Table 12. 
 
Tabel 12. Economic parameter sensitivity analysis of the PREC-Fenton system 

Sensitivity Analysis -10% 10% 2% 
TW Production 13,500 16,500 300.00 
Capital Expenditure (CAPEX) 304,718 372,433 6,772 
Minimum Required Cost (MRC) 7,330 8,959 163 
Operating Expenditure (OPEX) 6,094 7,449 135 
Loan Interest Rate 5.40% 6.60% 0.12% 
Equity Share 27.00% 33% 0.60% 
Debt Share 63.00% 77% 1.40% 
Minimum Acceptable Rate of Return (MARR) 13.50% 17% 0.30% 
Selling Price (USD) 0.00540 0.00660 0.00012 
Inflation Rate 1.66% 2.02% 0.04% 

 

4. Conclusions 
 

This study successfully developed a PREC-Fenton model that outperforms 
conventional methods for hazardous waste (B3) treatment, achieving a POP degradation 
efficiency of up to 99.99%, equivalent to 1,038.8 kg/hour, while producing 176.24 kg/hour 
of clean water. The system operates with an electro-Fenton potential of 2.13 V across 30 cell 
units, a hydrogen production rate of 0.83 mol H₂/m²·h, a membrane surface area of 123.45 
m², a pumping power of 0.00035 W/m², and regeneration heat of 0.054 kW. Integration 
with an Organic Rankine Cycle (ORC) improves energy efficiency from 40% to 46.13%, 
yielding a total energy output of 300.17 kW. 

System optimization using an Artificial Neural Network (ANN) with an optimal 
configuration of 13 neurons in a single hidden layer resulted in the lowest RMSE values 
(0.4838 for the training set and 0.5160 for the validation set) and high R² values for KP, KI, 
and KD parameters at 0.96594, 0.96529, and 0.96753, respectively. The financial feasibility 
analysis shows that the system is economically viable, with a Net Present Value (NPV) of 
USD 125,529, an Internal Rate of Return (IRR) of 33.48%, and a Break-Even Point (BEP) of 
44%. With these outcomes, the PREC-Fenton system directly contributes to the 
achievement of SDGs 6, 7, 9, 12, 13, 14, and 15, which are related to clean water and 
pollution reduction, clean energy, technological innovation, sustainable waste management, 
environmental impact mitigation, and the preservation of terrestrial and aquatic 
ecosystems. Therefore, the PREC-Fenton process represents an efficient, economical, and 
environmentally friendly solution for hazardous waste treatment, aligning with the vision 
of Smart Society 5.0. 

The effectiveness of the PREC-Fenton system can be further enhanced through pilot-
scale industrial trials to ensure stability and efficiency under real operational conditions. 
Additionally, the use of Artificial Neural Networks (ANN) as a fitting tool for PID controller 
parameters should be reassessed by taking into account the flexibility requirements of 
industrial applications. Further research is also needed to expand the application of the 
PREC-Fenton system to various types of hazardous waste (B3), thereby achieving broader 
and more measurable pollutant reduction impacts. 
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Appendix 1. Aspen plus design inputs 

 
Appendix 2. Sensitivity analysis of economic parameters on net present value (NPV) 

Percentage 
Change 

TW 
Production 

CAPEX MRC OPEX Loan 
lnterest 
Rate 

Equity 
Share 

Debt Share MARR Selling Price Inflation 

-10% 84,116 148,074 129,762 129,048 128,770 129,299 140,433 148,291 84,116 126,336 
-8% 92,398 143,565 128,916 128,345 128,125 128,545 137,452 143,440 92,398 126,176 
-6% 100,681 139,056 128,069 127,641 127,479 127,791 134,472 138,745 100,681 126,015 
-4% 108,964 134,547 127,222 126,937 126,831 127,037 131,491 134,198 108,964 125,853 
-2% 117,246 130,038 126,376 126,233 126,181 126,283 128,510 129,795 117,246 125,691 
0% 125,529 125,529 125,529 125,529 125,529 125,529 125,529 125,529 125,529 125,529 
2% 133,811 121,020 124,682 124,825 124,875 124,775 122,548 121,395 133,811 125,366 
4% 142,094 116,511 123,836 124,121 124,219 124,021 119,567 117,387 142,094 125,202 
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6% 150,377 112,002 122,989 123,417 123,561 123,267 116,586 113,502 150,377 125,038 
8% 158,659 107,493 122.42 122,713 122,901 122,513 113,605 109,734 158,659 124,874 
10% 166,942 102,984 121,296 122,009 122,239 121,759 110,624 106,079 166,942 124,708 

 
Appendix 3. Sensitivity analysis of economic parameters on internal rate of return (IRR) 

Percentage 
Change 

TW 
Production 

CAPEX MRC OPEX Loan 
lnterest 
Rate 

Equity 
Share 

Debt Share MARR Selling Price Inflation 

-10% 27.15% 39.72% 34.10% 34.00% 34.04% 35.83% 36.18% 33.48% 27.15% 33.55% 
-8% 28.40% 38.35% 33.98% 33.89% 33.93% 35.32% 35.63% 33.48% 28.40% 33.53% 
-6% 29.66% 37.05% 33.85% 33.79% 33.82% 34.83% 35.09% 33.48% 29.66% 33.52% 
-4% 30.93% 35.80% 33.73% 33.69% 33.71% 34.37% 34.55% 33.48% 30.93% 33.51% 
-2% 32.20% 34.62% 33.61% 33.59% 33.60% 33.92% 34.02% 33.48% 32.20% 33.50% 
0% 33.48% 33.48% 33.48% 33.48% 33.48% 33.48% 33.48% 33.48% 33.48% 33.48% 
2% 34.77% 32.40% 33.36% 33.38% 33.37% 33.07% 32.95% 33.48% 34.77% 33.47% 
4% 36.06% 31.37% 33.24% 33.28% 33.26% 32.67% 32.43% 33.48% 36.06% 33.46% 
6% 37.36% 30.38% 33.11% 33.18% 33.15% 32.28% 31.90% 33.48% 37.36% 33.45% 
8% 38.66% 29.43% 32.99% 33.07% 33.03% 31.91% 31.38% 33.48% 38.66% 33.43% 
10% 39.97% 28.52% 32.87% 32.97% 32.92% 31.55% 30.86% 33.48% 39.97% 33.42% 
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