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 Abstract 

Coastal mangrove forests play a crucial role in balancing carbon emissions 
in the atmosphere as they are a significant carbon store. Previous studies 
have shown that mangroves can absorb carbon four times more efficiently 
than terrestrial tropical forests. Unfortunately, the massive development 
and land use changes in Teluknaga District's coastal areas threaten these 
ecosystems' existence. To address this concern, efforts are being made to 
increase conservation, including estimating carbon stock. The aim of this 
study is to analyze the spatial distribution of biomass and carbon stock of 
mangrove forests in Teluknaga between 2016-2022 based on vegetation 
indices such as ARVI, EVI, and SAVI. Sentinel-2 was calculated into ARVI, 
EVI, and SAVI vegetation indices to model biomass. Statistical correlation 
analysis was also used to determine the best vegetation index to model 
biomass in the coastal area of Teluknaga District. This study found that the 
ARVI vegetation index had the best correlation (R = 0.60) for modeling 
biomass, with an RMSE value of 36.67 kg/pixel. Most mangrove forests in 
the coastal area of Teluknaga District showed an increase in biomass and 
carbon stock between 2016-2022, with significant growth in Muara and 
Lemo villages' mangrove forests, which is in line with an increase in the 
area and density of mangrove forests. 
Keywords: biomass; carbon stock; mangrove; sentinel-2; vegetation 
indices 
 

1. Introduction 

Mangroves are crucial resources for improving human welfare and environmental stability 
in tropical nations like Indonesia. These ecologically beneficial plants provide erosion 
control, nursery grounds, and protection for coastal areas (Rizal, 2018). Additionally, they 
are effective carbon stores and absorbers, making them valuable for the environment 
(Otero et al., 2018). Mangrove forests have the highest carbon storage compared to other 
vegetation in coastal areas (Wicaksono, 2017), with an average of 1,023 mg of carbon per 
hectare (Jerath et al., 2016). This demonstrates that mangrove forests have more carbon 
stock than forests on land or terrestrial areas. 

The significance of mangrove forests lies in their ability to store large amounts of 
carbon, which is crucial in combating global warming. The adverse effects of global warming 
threaten all living beings on Earth. Climate change and global warming are closely linked to 
the anthropogenic emission of CO2 (Yoro, et al., 2020). As a greenhouse gas, CO2 contributes 
significantly to global warming, and its concentration in the atmosphere is a major factor in 
climate change (Yoro, et al., 2020). The substantial carbon content in mangroves plays a 
vital role in offsetting anthropogenic CO2 emissions (Macreadie et al., 2017). Therefore, 
preserving the extent of mangroves is a critical aspect of the REDD+ (Reducing Emission 
from Deforestation and Degradation) activities, which focuses on increasing carbon stocks 
(Ahmed, et al., 2016). Mangroves have the ability to convert atmospheric CO2 into organic 
compounds that support the growth and development of their leaves, roots, branches, and 
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stem tissue while creating carbon storage reserves (Hidayah, et al., 2019). Additionally, they 
can absorb carbon at a rate four times higher than terrestrial forests in tropical areas 
(Zulhalifah et al., 2021). Therefore, managing and preserving mangrove ecosystems 
effectively is essential to combat climate change (Sidik et al., 2018). 

Teluknaga District in Tangerang is home to the mangrove ecosystem, which is a part 
of the larger mangrove forest area in Jakarta Bay. This area is spread over three 
administrative regions, including Teluknaga District, Penjaringan District, and Muara 
Gembong District, and spans across 9,749 hectares (Aini et al., 2015). The mangrove 
ecosystem in Teluknaga District is significant in Banten Province and has the potential for 
tourism, fisheries, and agriculture (Sari, et al., 2019). 

The Teluknaga District's coastal area is a part of the Tangerang Regency's reclamation 
area. The plan for reclamation in the Teluknaga District area is based on the Regency 
Regulation of Tangerang No. 13 in 2011, which outlines the 2011-2031 Regional Spatial 
Planning (RT/RW) for Tangerang Regency. According to the regulation, Teluknaga District 
will have a reclamation area, which will become a protected forest area in the form of a 
mangrove forest. This is a significant concern because the reclamation activities in the 
Teluknaga District area must consider the mangrove ecosystem, which is part of a protected 
forest (RT/RW Tangerang Regency 2011-2013, 2011). The sediment deposition around the 
mangrove ecosystem caused by the reclamation activities can impact the mangroves 
(Slamet et al., 2020). High sediment deposits can cover mangrove roots and disrupt the 
mangrove respiration process (Zamani, 2019). Therefore, it is crucial to measure the carbon 
stocks in the mangrove forests in Teluknaga District, which are threatened by the 
reclamation activities (Slamet et al., 2020). One of the methods used to measure carbon 
stocks is remote sensing technology. 

The use of remote sensing technology to measure carbon has the potential to produce 
more accurate and detailed research (Angelopoulou et al., 2019). This technology can 
provide data with higher spatial resolution and temporal data. It is also a cost-effective tool 
for analyzing mangrove features. Previous studies have used remote sensing technology to 
map mangrove carbon stocks (Muhsoni et al., 2018; Pham et al., 2021; Siddiq et al., 2020). 
Vegetation indices, such as the Atmospherically Resistant Vegetation Index (ARVI), 
Enhanced Vegetation Index (EVI), and Soil Adjusted Vegetation Index (SAVI), can be 
combined with field data to estimate carbon stocks (Candra et al., 2016). Medium-resolution 
satellite imagery data, like Sentinel-2, can estimate carbon stocks with a shorter recording 
visit time of 5 days (Baloloy et al., 2018). Sentinel-2 has a near-infrared and visible infrared 
sensor that provides 13 spectral bands with varying spatial resolution, namely 10 m, 30 m, 
and 60 m. Based on these features, Sentinel-2 satellite imagery can be used to estimate 
carbon stocks in mangroves using vegetation indices. 

This research aims to examine the spatial arrangement of biomass and carbon stock 
in mangrove forests located in the Teluknaga coastal district during the years 2016 - 2022. 
The study utilizes the most effective vegetation index method, which involves three indices: 
ARVI, SAVI, and EVI, derived from Sentinel-2 imagery. The research also applies both spatial 
and statistical techniques to generate the optimum vegetation index that predicts the 
biomass and carbon stocks of mangrove forests in the Teluknaga coastal region. 

 
2. Methods 
2.1. Study Area 
This research was conducted in a mangrove forest on Teluknaga District's coast, which 
spans four administrative areas: Tanjung Burung Village, Tanjung Pasir Village, Muara 
Village, and Lemo Village (see Figure 1). The research area is currently undergoing 
reclamation to construct residential and economic centers. These circumstances pose a 
threat to the survival of the mangrove forests in the study area. 
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2.2. Data Collection 
For this study, two types of data were used: secondary and primary data. The secondary 
data included satellite imagery, while the primary data consisted of two components, such 
as species and diameter at breast height (DBH). 
 

 
Figure 1. Administrative Boundaries of Teluknaga District 

The satellite imagery used in this study is Sentinel-2 imagery. Further details 
regarding the Sentinel-2 imagery used are listed in Table 1. The Sentinel-2 satellite imagery 
used in this study was obtained from scihub.copernicus.eu. Sentinel-2 imagery is a satellite 
imagery developed by the European Space Agency (ESA) with a spatial resolution 
specification of 10, 30, and 60 meters with 13 spectral bands (Drusch et al., 2012). The red 
band and near-infrared (NIR) band used in processing the vegetation index have a spatial 
resolution of 10 m. The use of Sentinel-2 provides an advantage because it will produce a 
relatively high spatial resolution vegetation indices. The sentinel imagery used is taken 
every two years to see the dynamics of mangrove forests and reclamation activities from 
2016 to 2022. 
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Table 1. Details of Sentinel-2 imagery data used 

Imagery type Recording date Data level 

Sentinel 2A October 7, 2016 
1C 

Sentinel 2B October 22, 2018 

Sentinel 2A July 20, 2020 
2A 

Sentinel 2B April 14, 2022 

Primary data collection in this study uses stratified random sampling. The number of 
samples collected will depend on the size of the mangrove area in the field. For this study, 
30 samples of forest area will be used, following the guidelines in BIG Regulation Number 3 
of 2014. This regulation sets the minimum number of sample plots based on the total 
mangrove area. Once the required number of plots has been obtained, they will be divided 
into a ratio of 8:2 (Liu et al., 2008), where 80% of the plots will be used as training data to 
build a biomass estimation model, and the remaining 20% will be used as testing data to 
check the accuracy of the model. 

The variables in this study consist of independent variables and dependent variables. 
As for mangrove species variables and diameter at breast height will be used to calculate 
above-ground biomass as the dependent variable (Y). Then, the independent variable (X) of 
this study is the pixel value of the ARVI, SAVI, and EVI vegetation indices. 

 
2.3. Mapping Mangrove Forest Distribution and Vegetation Indices 
Mapping the distribution of mangrove forests is carried out using the supervised 
classification method. This method is carried out by utilizing available pixel information in 
the image, which generates parameters representing each class of land cover observed. In 
this research, supervised classification is carried out using the Google Earth Engine, where 
script code is entered into the processing process using the Javascript programming 
language. Making a map of the distribution of mangrove forests is done by dividing the 
research area into mangrove and non-mangrove forests. 

To map the distribution of mangrove forests, a test was conducted to assess accuracy. 
Sample points from Sentinel-2 satellite imagery in 2022 were compared to the actual 
presence of mangrove forests in the field. Additionally, Sentinel-2 satellite imagery from 
2016, 2018, and 2020 were compared to high-resolution Google Earth base maps. The 
Kappa coefficient was used to calculate accuracy (Sharma, 2018). 

 
2.4. Vegetation Indices 
After obtaining the mangrove forest distribution map, the next step is processing the 
vegetation index. This study's vegetation indices consisted of ARVI, SAVI, and EVI. This 
processing was done using ArcGIS Pro software by entering the ARVI, SAVI, and EVI 
vegetation indices equations. 

ARVI is a type of vegetation index that is an improved version of NDVI (Xue, et al., 
2017). It has greater resistance to atmospheric effects compared to NDVI. The ARVI formula 
uses the blue band to reduce the impact of atmospheric scattering caused by aerosols on the 
reflectance of the red band. Various studies have shown that ARVI is effective in reducing 
the brightness effect of atmospheric aerosols and is a reliable model for estimating AGB 
(Bordoloi et al., 2022; Siddiq et al., 2020). ARVI has the same range as NDVI, which is -1.0 to 
1.0 (Kaufman, et al., 1992). The equation used to calculate ARVI is as follows: (Xue, et al., 
2017) 

𝐴𝑅𝑉𝐼 =
𝑁𝐼𝑅 − (𝑅 − 𝛾(𝐵 − 𝑅))

𝑁𝐼𝑅 + (𝑅 − 𝛾(𝐵 − 𝑅))
 (1) 
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where, NIR = reflectance in the near-infrared band; R = reflectance in the red band; B = reflectance in 
the blue band; γ = atmospheric self-correction factor that depends on the aerosol type (γ = 1, when 
an aerosol model is not available).                                                               

SAVI index is a useful tool that can help reduce the impact of soil brightness on the 
red and near-infrared (NIR) bands (Chen et al., 2019). It uses remote sensing data to model 
global soil-vegetation systems and can also analyze the transfer of NIR beams in non-
vegetation areas (Rhyma et al., 2020). One advantage of using SAVI for AGB estimation is 
that it has a soil adjustment factor that helps minimize the effect of soil brightness on canopy 
reflectance (Das et al., 2021). Additionally, SAVI incorporates a ground brightness 
correction factor. The equation for SAVI is as follows: (Rhyma et al., 2020) 

𝑆𝐴𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅 + 𝐿
× 1 + 𝐿 (2) 

where, NIR = reflectance in the near-infrared band; R = reflectance in the red band; B = reflectance in 
the blue band; L = adjustment factor to reduce the brightness of the soil (L = 0.5). 

EVI was adopted by the Moderate Resolution Imaging Spectroradiometer (MODIS) 
Land Discipline Group as a vegetation index that can monitor photosynthetic activity in 
vegetation (Maeda et al., 2014). EVI is a feedback approach that includes background 
adjustment and the concept of atmospheric resistance into NDVI (Ahmad, 2012). It is an 
improved version of NDVI that enhances the ability to monitor vegetation in areas with high 
biomass and minimal atmospheric influence. EVI is more responsive to changes in 
vegetation canopy structure, canopy type, and vegetation physiology than NDVI (Yebra et 
al., 2013). The equation used in EVI is as follows: (Siddiq et al., 2020) 

𝐸𝑉𝐼 = 𝐺 ×
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + (𝐶1 × 𝑅 − 𝐶2 × 𝐵) + 𝐿
 (3) 

where, NIR = reflectance in the near-infrared band; R = reflectance in the red band; B = reflectance in 
the blue band; G = gain factor (G = 2.5); C1, C2 = aerosol coefficient (C1 = 6, C2 = 7.5); L = canopy 
calibration factor and soil effect (L = 1). 

2.5. Carbon Stock Modelling 
To estimate aboveground mangrove biomass, a three-step approach was followed. The first 
step involved conducting a normality test, followed by a linear regression test, and finally 
an accuracy test. IBM SPSS was used to perform the normality and linear regression tests. 
The accuracy test was conducted by calculating the Root Mean Square Error (RMSE) using 
Microsoft Excel. 

Vegetation indices values of mangrove forests for 2016 - 2022 are obtained, tested 
for correlation, and then analyzed for correlation with biomass values obtained through 
field measurements by calculating the Diameter of Breast Height (DBH). This analysis was 
conducted using a linear regression test using IBM SPSS software, resulting in correlation 
values and a linear regression equation. The vegetation index that showed the strongest 
correlation with field biomass values will be used for biomass modelling. Carbon stock 
modelling will be derived from biomass modelling using the following equation: (Hastuti et 
al., 2017) 

𝐸𝐶𝑏 = 𝐵 × %𝐶𝑜𝑟𝑔𝑎𝑛𝑖𝑐 (4) 

where, ECb = above ground carbon stock (kg); B = above ground biomass (kg); %Corganic = the 
percentage value of carbon stock (%Corganic = 0.47). 
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2.6. Accuracy Test 
A model accuracy test was conducted for the top regression model, utilizing the RMSE test. 
To perform this test, 20% of the overall field plot data was utilized for testing. A smaller 
RMSE value indicates that the predicted value from the model is closer to the actual 
measurement value of the field data. The formula for RMSE is as follows: 

𝑅𝑀𝑆𝐸 = √
(𝑦 − 𝑦′)2

𝑛
 (5) 

where, y = field measurement data; y’ = vegetation indices modelling data; n = total number of 
samples. 

 
3. Results and Discussion 
3.1. Classification of Vegetation Indices 
The study utilized several vegetation indices such as ARVI, SAVI, and EVI. The vegetation 
index was processed using ArcGIS Pro software, by applying Equation 1 for ARVI, Equation 
2 for SAVI, and Equation 3 for EVI vegetation indices. Moreover, the vegetation indices were 
classified based on equal intervals into three classes as in Table 2. 

Table 2. Vegetation index classification 

Classification Vegetation index values 

Low -0.163 – 0.146 

Moderate 0.147 – 0.456 

High 0.457 – 0.765 

Throughout the study area, the ARVI vegetation index in the study area experienced 
fluctuations from 2016 - 2022. The southeastern coastal area of Teluknaga District saw an 
increase in the range of ARVI values from 2016 to 2018. During this time, the low vegetation 
index classification dominated the region in 2016, but shifted to the moderate class 
vegetation index classification by 2018. Meanwhile, the northwestern part of Tanjung 
Burung Village saw high vegetation index classification ARVI values in both 2016 and 2018 
(see Figure 2). However, by 2020, most of the mangrove forests in the study area had fallen 
into the low vegetation index classification. This indicated a decrease in the range of ARVI 
values from 2018 in most parts of the study area. However, there was an increase in the 
ARVI value in mangrove forests to the medium class in 2020, particularly in Muara Village, 
Tanjung Pasir Village, and Lemo Village.  

 
Figure 2. ARVI Classification Map of Mangrove Forests on the Coastal Area in Teluknaga District 



EAM. 2023, VOLUME 1, ISSUE 2     55 

 

 

 
Figure 3. SAVI Classification Map of Mangrove Forests on the Coastal Area in Teluknaga District 

 
Figure 4. EVI Classification Map of Mangrove Forests on the Coastal Area in Teluknaga District 

The fluctuation of ARVI values corresponds with the size of mangrove forests in the 
area (Hati et al., 2022). For instance, the mangrove forest in Lemo Village has seen a rise in 
ARVI value from a low vegetation index classification to a moderate low vegetation index 
classification class between 2016 and 2022. The reason for this change is the increase in 
mangrove forest size in Lemo Village over the same period. 

Throughout the study area, it has been observed that the SAVI vegetation index range 
has increased (see Figure 3). This increase is attributed to a rise in the mangrove forests, 
which correlates with the increase in the SAVI value. The L (adjustment factor) value, 
employed in the SAVI calculation, can indicate the level of vegetation cover (see Equation 
2). Higher L values signify lower vegetation cover within the study area. Thus, the L value 
can demonstrate the sensitivity of SAVI in detecting changes in mangrove forests. 
Consequently, an increase in SAVI value implies a greater vegetation cover within the area. 

Regarding the EVI vegetation index, it has been observed that the largest changes 
occur within the established mangrove forests located in the eastern coastal region of 
Teluknaga District. Figure 3 illustrates this, showing that in 2016, most of the eastern 
coastal areas of Teluknaga District were categorized as being of low vegetation index 
classification. However, by 2018, most of mangrove forests in those areas had moved up to 
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the moderate vegetation index classification, only to fall back to low vegetation index 
classification again from 2020 to 2022. 

Based on figure 4, the EVI value in the study area is mostly low, indicating less dense 
mangrove forests in certain parts of the research area. This is due to the sensitivity of EVI 
in areas with dense vegetation cover. A higher EVI value corresponds to a higher density of 
vegetation cover (Zhu et al., 2021). It is evident that the low vegetation index classification 
dominates the overall EVI value. 

 
3.2. Modelling of Aboveground Biomass 
The data normality test was carried out to determine whether the dependent variable, 
which in this study is the biomass value from field measurements, has a normal distribution. 
Normality is one of the assumptions that must be fulfilled to perform a linear regression 
test. The data normality test used in this study is the Shapiro-Wilk test. This test was used 
because the number of samples used for the normality test was less than 50. Based on Table 
3, it is known that the measured biomass data is normally distributed data. It is known that 
based on the Shapiro-Wilk test, the p-value obtained is 0.079, this value indicates that the 
p-value is > 0.05, which indicates that the biomass data is normally distributed. 

Table 3. Results of the normality test for biomass data from field measurements 

 Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Biomass .162 30 .042 .938 30 .079 
aLillefors Significance Correction 

A linear regression test was conducted to analyze the relationship between the 
independent variables, which are the pixel value of ARVI, SAVI, and EVI, and the dependent 
variable, which is the field biomass value. Based on the findings, the ARVI vegetation index 
has the highest R-value (0.60) compared to SAVI and EVI (see Table 4). As a result, the linear 
regression equation derived from ARVI was utilized to model biomass and estimate carbon 
stocks. 

Table 4. Results of linear regression tests and accuracy tests 

Vegetation indices Linear regression equations R RMSE 

ARVI 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 1,119.634 × (𝐴𝑅𝑉𝐼) − 93.130 0.60 36.67 

SAVI 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 407.234 + 417.045 × (𝑆𝐴𝑉𝐼) 0.14 419.62 

EVI 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 23.892 + 4.129 × (𝐸𝑉𝐼) 0.13 116.52 

 
The calculations for Root Mean Square Error (RMSE) show that the biomass modeling 

using vegetation index has varying results. The model using SAVI has a high RMSE value, 
while the model using ARVI has a low RMSE value. The RMSE value indicates the difference 
between the modeled biomass value and the field measurement biomass value. The biomass 
modeling using ARVI pixel values has an RMSE value of 36.67 (see Table 4). This shows that 
the aboveground biomass modeling using ARVI pixel values differs from the biomass values 
obtained from field measurements by 36.67 kg/pixel. 

 
3.3. Distribution of Carbon Stocks in 2016 – 2022 
The aboveground carbon stock is obtained by calculating using Equation 4. The ARVI 
vegetation index regression model is then used to model the aboveground biomass, which 
is then input into a linear regression equation (see Table 4). This entire process is done 
using the raster calculation feature available in ArcGIS Pro. Upon testing the accuracy of the 
aboveground carbon stock modeling, it was found that the RMSE value is 17.22. This 
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indicates that the carbon stock value obtained from the ARVI vegetation index modeling 
results differ by 17.22 kg/pixel from field measurements. 

Furthermore, the results of the estimation of aboveground carbon stocks are 
classified into five classes as in Table 5. Each of these ranges is then calculated for the area 
of mangrove forest each year, assuming 1 pixel is 100 m2.  

Table 5. Carbon stocks classification 

Classification Carbon stocks values (kg/pixel) 

Very low 0 – 55.25 

Low 55.26 – 110.51 

Moderate 110.52 – 165.76 

High 165.77 – 221.02 

Very high 221.03 – 276.27 

As seen in Figure 5 and Table 6, it has been observed that most of carbon stocks in 
mangrove forests have been categorized as very low carbon stocks classification in all years 
analyzed. In 2016, 76.17% of the forest area, which is equivalent to 112.15 hectares, was 
classified as very low carbon stocks classification. The percentage of mangrove forests in 
the very low carbon stocks classification remained around 73% in 2018 and 2020. However, 
in 2022, it is expected that 66.53% or 120.54 hectares of mangrove forests will be classified 
in the very low carbon stocks classification. The data from 2016 to 2022 indicates a decline 
in the percentage of mangrove forests in the very low carbon stocks classification. The most 
significant decrease occurred between 2020 and 2022, with a 6.04% drop. 

Between 2016 and 2018, there was a rise in the proportion of mangrove forest areas 
in the low carbon stocks classification. In 2016, the low carbon stocks classification made 
up 15.55% of the mangrove forest areas, which then increased to 19.35% in 2018, a growth 
of 3.8%. Moreover, the percentage of mangrove forest areas in the low carbon stocks 
classification continued to increase from 2020 to 2022, with the most significant rise 
occurring between 2018 and 2020. During this period, the percentage of land area for the 
low carbon stocks classification grew by 7.84%. 

 
Figure 5. Diagram of Changes in the Value of Aboveground Carbon Stock Range 
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Table 6. The area of mangrove forests for each class of carbon stocks 

Year Classification 
Carbon stocks 

values (kg/pixel) 

Area 

(pixels) 

Area 

(ha) 
% area 

Total area 

(ha) 

2016 

Very low 0 – 55.25 11,215 112.15 76.17 

147.23 

Low 55.26 – 110.51 2,289 22.89 15.55 

Moderate 110.52 – 165.76 921 9.21 6.26 

High 165.77 – 221.02 277 2.77 1.88 

Very high 221.03 – 276.27 21 0.21 0.14 

2018 

Very low 0 – 55.25 10,726 107.26 72.84 

147.25 

Low 55.26 – 110.51 2,849 28.49 19.35 

Moderate 110.52 – 165.76 859 8.59 5.83 

High 165.77 – 221.02 241 2.41 1.64 

Very high 221.03 – 276.27 50 0.5 0.34 

2020 

Very low 0 – 55.25 11,614 116.14 72.57 

160.04 

Low 55.26 – 110.51 4,351 43.51 27.19 

Moderate 110.52 – 165.76 39 0.39 0.24 

High 165.77 – 221.02 0 0 0 

Very high 221.03 – 276.27 0 0 0 

2022 

Very low 0 – 55.25 12,054 120.54 66.53 

181.18 

Low 55.26 – 110.51 5,048 50.48 27.86 

Moderate 110.52 – 165.76 988 9.88 5.45 

High 165.77 – 221.02 28 0.28 0.15 

Very high 221.03 – 276.27 0 0 0 

Generally, the least amount of mangrove forest area can be found within the carbon 
stock range of 221.03 – 276.27 kg/pixel, which is classified as very high carbon stocks 
classification. Between 2018 and 2020, there was a notable decrease in the percentage of 
this category. As a result, no mangrove forests were left within the very high carbon stocks 
classification in 2020 and 2022. 

The map in Figure 6 displays the spatial distribution of aboveground carbon stock 
values in mangrove forests along the Teluknaga District coast. It reveals that very low 
carbon stock values dominate all mangrove forests from 2018 to 2022. However, in 2016 
and 2018, the northwestern region of Tanjung Burung Village exhibited very high carbon 
stock values. From 2016 to 2018, the southeastern areas of Muara Village and Lemo Village 
showed the range of carbon stock values between 55.26 to 110.51kg/pixel (low carbon 
stocks classification) and 110.52 to 165.76kg/pixel (moderate carbon stocks classification). 
In 2020, the same areas that were previously in the carbon stock classification were 
transformed into the low carbon stocks classification. However, the southeastern regions of 
Muara Village and Lemo Village are now categorized as moderate and high carbon stocks 
classification in 2022. 
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Figure 6. Distribution of Aboveground Carbon Stocks of Mangrove Forests  

on the Coastal Area in Teluknaga District 

The value of carbon stock in Teluknaga’s mangrove ecosystems is affected by 
reclamation activities (Slamet et al., 2020). Studies reveal that mangrove forests located 
close to settlements experienced reduced carbon stocks due to such activities. On the other 
hand, those mangrove that situated in the coastal areas showed increased carbon stocks 
(Slamet et al., 2020). Furthermore, the size of the mangrove forest plays a significant role in 
determining the fluctuation of carbon stocks (Mulyaningsih et al., 2017). 

The largest reduction in carbon stocks in mangroves was observed in Tanjung Burung 
Village and the western region of Tanjung Pasir Village. This decline began in 2016 and 
continued until 2022 due to the loss of mangrove forests in the area. The primary reason 
for this loss is attributed to reclamation activities. Figure 9a illustrates the changes in the 
mangrove forests of these two villages. The loss of these forests has resulted in a significant 
decrease in the value of carbon stocks. In 2016, carbon stocks were recorded to have 
varying values from low to high carbon stocks classification. However, it is expected that 
these stocks would disappear entirely by 2022. 

In contrast, the mangrove forests in Muara Village and Lemo Village have experienced 
an increase in carbon stocks. Figure 7b shows a significant change in the value of carbon 
stocks in the area from 2016 to 2022. Some mangrove forest areas in Muara Village and 
Lemo Village have transitioned from very low carbon stocks classification to moderate 
carbon stocks classification to high carbon stocks classification. The expansion of mangrove 
forests towards the coastal zone also contributes to the rise in carbon stocks. Previous 
studies have found that mangroves are most dominant in Muara Village and Lemo Village's 
coastal zone (Aini et al., 2015). The increase in the coastal zone's mangrove forest area due 
to reclamation is caused by a decrease in tidal prisms (Rusdiansyah et al., 2018). Tidal 
prisms refer to the amount of water that flows in and out of estuaries and bays due to tides 
(Schwartz, 2005). The decrease in tidal prisms results in weaker water circulation, which 
maximizes the distribution of nutrients to mangroves and promotes their growth. 
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Figure 7. Mangrove Forests Changes Due to Reclamation in (a) 2016; (b) 2022 

 

4. Conclusions 
Between 2016 and 2022, the mangrove forest along the coast of Teluknaga District has 
grown in size. The most significant growth has taken place in Muara Village and Lemo 
Village. However, some of the mangroves in Tanjung Burung and Tanjung Pasir Villages 
have disappeared or are nearly nonexistent in 2022 due to extensive development in those 
areas. The expansion of the mangrove forest along the Teluknaga District coast affects the 
vegetation indices values. The wider the mangrove forest, the higher the ARVI, SAVI, and 
EVI values. 

The ARVI vegetation index model is highly correlated with aboveground mangrove 
biomass as measured in the field. The relationship between field biomass measurements 
and ARVI pixel values shows a moderate correlation with an RMSE value of 36.67 kg/pixel. 
This indicates that there is a difference of 36.67 kg/pixel between the aboveground biomass 
values calculated using ARVI pixel values and those measured in the field.  

According to the model, the aboveground biomass and carbon stock in mangrove 
forests along the Teluknaga District coast have increased in most study areas. This is in line 
with the expansion of mangrove forests in the district. As a result, areas with high mangrove 
forest density and coverage exhibit elevated carbon stocks.  
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