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ABSTRACT  
Background: This review aims to compare diagnostic advancements for malaria and dengue fever in Indonesia 
and Nigeria, highlighting the implementation of AI-based technologies and electrochemical biosensors. Both 
diseases are endemic in these tropical countries and present overlapping clinical symptoms, making laboratory-
based confirmation methods such as RT-PCR and serological assays critical for accurate diagnosis. Methods: A 
structured literature review was conducted using Scopus, PubMed, and IEEE Xplore databases, focusing on peer-
reviewed studies published between 2015 and 2024 that reported diagnostic performance and field 
applicability of the technologies. This scientific review synthesizes existing literature on infection mechanisms, 
conventional diagnostic methods (microscopy, RDT, ELISA, PCR), and state-of-the-art sensing technologies, 
including the AI-based malaria detection system (AIDMAN: YOLOv5 + Transformer + CNN) and electrochemical 
biosensors for dengue. Findings: The AI approach for malaria achieved high accuracy (patch-level 98.62% AUC 
99.92%; image-level 97% AUC 98.84%). Dengue NS1 electrochemical biosensors reached a detection limit of 
~10⁻¹² g/mL with excellent sensitivity and reproducibility, suitable for point-of-care use. Conclusion: 
Integrating sensing technologies from rapid tests to AI-driven microscopy and biosensors enables faster, more 
accurate diagnosis, improving patient management in resource-limited settings. Novelty/Originality of this 
article: This is the first comprehensive review that bridges cross-country (Indonesia and Nigeria) and cross-
technology (AI and biosensor) approaches, offering valuable insight into sustainable diagnostic innovation for 
tropical infectious diseases. 

 

KEYWORDS:  malaria; dengue fever; diagnostics; RT-PCR; RDT; AI; biosensor; Indonesia; 
Nigeria. 
 

 

1. Introduction 
 
This review aims to compare diagnostic advancements for malaria and dengue fever in 

Indonesia and Nigeria, focusing on novel AI-based and biosensor technologies to improve 
detection accuracy and applicability in low-resource settings. Malaria and dengue fever are 
two endemic diseases that continue to impose a public health burden in many tropical 
countries, including Indonesia and Nigeria. Despite differences in geography and health 
systems, both countries face similar challenges in early detection and disease management. 
Malaria, transmitted by Anopheles mosquitoes, and dengue, spread by Aedes mosquitoes, 
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share overlapping clinical symptoms such as fever, headache, muscle and joint pain, rash, 
and conjunctivitis, complicating differential diagnosis. 

According to WHO data (2023), Indonesia reported over 600,000 confirmed malaria 
cases, while Nigeria accounted for approximately 27% of global malaria deaths. Meanwhile, 
dengue fever has shown a nearly 300% increase in reported cases over the last two decades 
in both countries, with periodic outbreaks and expanding geographic distribution. These 
trends highlight an urgent need for improved diagnostic tools that are fast, accurate, and 
adaptable to low-resource settings. Conventional diagnostic approaches, including light 
microscopy, rapid diagnostic tests (RDT), ELISA, and PCR remain the gold standards but are 
limited by infrastructure, time requirements, and trained personnel. The emergence of new 
technologies such as artificial intelligence (AI) for automated microscopy and 
electrochemical biosensors offers promising solutions, particularly in rural or resource-
constrained areas. 

Despite the increasing availability of diagnostic tools, their accuracy, applicability, and 
affordability in field settings remain insufficiently explored, especially in comparative 
contexts across developing countries. Moreover, few studies have critically examined how 
such technologies perform and integrate into national health systems. This review aims to 
examine and compare the development, diagnostic performance, and practical applicability 
of AI-based tools for malaria and biosensor-based systems for dengue in Indonesia and 
Nigeria. The discussion is guided by the following questions: what diagnostic tools are 
currently available for malaria and dengue in Indonesia and Nigeria; how do AI and 
biosensor-based technologies compare in terms of accuracy, cost, and field readiness; and 
what are the implementation challenges and future opportunities for diagnostic innovation 
in tropical health systems. 

In Nigeria, Plasmodium falciparum is the most commonly encountered species and 
responsible for the majority of malaria cases. Studies and reports from the National Malaria 
Elimination Program (NMEP) and peer-reviewed research indicate that P. falciparum 
accounts for over 96% of malaria cases (Djaafara et al., 2025; Opute et al., 2022). Other 
species such as Plasmodium malariae and Plasmodium ovale are also present but in much 
smaller proportions (Djaafara et al., 2025). Interestingly, there have been rare reports of 
Plasmodium vivax infections in Duffy-negative individuals (Djaafara et al., 2025). In 
Indonesia, both P. falciparum and P. vivax are major causes of malaria, although their 
prevalence varies by region. For example, in Papua, P. falciparum is more dominant, 
whereas in other areas P. vivax is more commonly the cause of malaria (Ajogbasile et al., 
2021). National malaria control programs and studies conducted from 2015 to 2025 show 
that while P. falciparum remains the primary concern, P. vivax also poses a significant 
challenge (Ajogbasile et al., 2021). 

Malaria vector species in Indonesia includes several Anopheles mosquitoes whose 
distribution varies by region. Anopheles sundaicus is common in coastal areas such as Java 
and Sumatra (Oboh et al., 2018; Opute et al., 2022). Anopheles maculatus is prevalent in 
hilly regions and rice-field areas (Ajogbasile et al., 2021). Anopheles barbirostris is found in 
both rice paddies and forested habitats (Oboh et al., 2018). Anopheles balabacensis is 
present in forested regions (Oboh et al., 2018). The primary malaria vectors in Nigeria are 
Anopheles gambiae, the most dominant species, widespread across various ecological zones 
(Djaafara et al., 2025); Anopheles funestus, common in humid, rural environments (Djaafara 
et al., 2025); and Anopheles arabiensis, found in drier regions and noted for its adaptability 
(Djaafara et al., 2025). 

Dengue fever is also a major public health challenge in both Indonesia and Nigeria. 
There are four dengue virus serotypes (DENV-1, DENV-2, DENV-3, and DENV-4), and the 
dominant serotype often shifts over time (Raafat et al., 2019). In Indonesia, DENV-1 is the 
most easily transmitted serotype, even in areas with no prior dengue history. DENV-2 and 
DENV-3 are known to be the most virulent and are often responsible for severe dengue 
outbreaks; these two serotypes have caused the most frequent dengue epidemics in 
Southeast Asia. In Nigeria, the pattern is somewhat different: DENV-2 is the most common 
serotype, particularly in southern regions (WHO, 2016, 2019). DENV-1 is also present and 
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historically significant, while DENV-3 and DENV-4 are detected but occur rarely 
(Syafruddinid et al., 2020; WHO, 2016). 

The primary dengue vector species in Indonesia is Aedes aegypti, which is widespread 
throughout the country (Aryati et al., 2020). Aedes albopictus is also found, especially in 
rural and peri-urban areas (Aryati et al., 2020). In Nigeria, the main vector species are the 
same: Aedes aegypti predominates in urban areas, and Aedes albopictus is commonly found 
in peri-urban and rural settings (Animasaun et al., 2025). Currently, conventional methods 
are generally used for diagnosing malaria and dengue fever. The first and gold-standard 
diagnostic method for malaria is light microscopy, due to its high accuracy (Fitri et al., 2022). 
With a light microscope, one can directly visualize Plasmodium parasites in the blood, 
determine the species (e.g., P. falciparum, P. vivax), identify developmental stages, and 
estimate parasite density. This method offers both high sensitivity for clinical malaria and 
comprehensive clinical information: not only confirming infection but also grading its 
severity (parasite density), thereby guiding treatment choice and monitoring. Light 
microscopy achieves sensitivity above 95% and specificity above 90% in detecting malaria. 

When microscopy is unavailable or impractical especially in remote setting, Rapid 
Diagnostic Tests (RDTs) are widely employed as a quick immunodiagnostic tool (Fitri et al., 
2022). RDTs are inexpensive, easy to use, and deliver results rapidly, making them ideal for 
field deployment. Their sensitivity ranges from 85% to 94.8%, with specificity above 95%. 
However, field studies in Cameroon and Nigeria have reported lower accuracy, likely due to 
technical issues, operator variability, or local epidemiological factors (Fitri et al., 2022). 
Early dengue diagnosis relies primarily on serological assays involving IgM and IgG 
detection, Hemagglutination Inhibition (HI), NS1 antigen tests, and Plaque Reduction 
Neutralization Tests (PRNT) (Kabir et al., 2021). IgM/IgG serology: Anti-dengue IgM 
appears approximately 5 days after symptom onset and persists for 2–3 months, making it 
useful for detecting acute infection. IgG indicates past or secondary infection but may cross-
react with other flaviviruses. An IgM/IgG ratio >1.32 suggests primary infection, whereas 
<1.32 indicates secondary infection (Kabir et al., 2021). 

 
Table 1. Diagnostic methods for malaria and dengue fever over time in Nigeria 

Period Diagnostic method Disease Application Reference 
1970s Microscopy Malaria Garki Project; rural settings Trenholme et al., 

1974 
1980s Microscopy Malaria Primary healthcare 

facilities; national control 
efforts 

NMCP History 

1990 Microscopy Malaria Therapeutic drug trials for 
chloroquine efficacy 

Mochly-Rosen et 
al., 1990 

2000s Rapid Diagnostic 
Tests (RDTs) 

Malaria Malaria case management in 
health facilities, especially 
rural areas 

Nallamothu et al., 
2005 

2010s RDTs + PCR (for 
surveillance) 

Malaria Malaria indicator surveys, 
drug resistance studies 

NMEP Reports; 
NCDC Reports 
(2017, 2019) 

2015–
present 

PCR + RDT Malaria Public health sector, 
Integrated Community Case 
Management (iCCM) 

Hodnebrog et al., 
2020 

2019 Trioplex PCR, RDTs Dengue Introduced at National 
Reference Lab for 
differential diagnosis (e.g. 
Lassa, Zika) 

NCDC Report 
2019 

2020s National RDTs + 
PCR (research/labs) 

Malaria, 
Dengue 

Routine health services, 
outbreak investigations 

NCDC Strategic 
Plan 2020–2024 

NMCP: National Malaria Control Program 
NCDC: Nigeria Centre for Disease Control and Prevention 
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Hemagglutination Inhibition (HI): Can distinguish primary from secondary infection 
but has low sensitivity for early detection. NS1 antigen test: NS1 ELISA (e.g., InBios® NS1 
ELISA, the only FDA-approved kit) offers the highest sensitivity (95.9%) and excellent 
accuracy across all serotypes especially DENV-4 (Kabir et al., 2021). Rapid NS1 tests suit 
low-resource settings but are less sensitive than ELISA. Plaque Reduction Neutralization 
Test (PRNT): Considered the gold standard for confirming dengue infection and evaluating 
vaccine-induced immunity. However, it is time-consuming, technically complex, and lacks a 
unified global protocol (Kabir et al., 2021). In practice, combining multiple methods 
serology (IgM, IgG, IgM/IgG ratio), NS1 antigen detection, and PRNT is often necessary for 
accurate dengue diagnosis, given the limited sensitivity and potential cross-reactivity of 
serological assays. 

The diagnostic methods for malaria used by both Indonesia and Nigeria are generally 
the same, namely RDT (Rapid Diagnostic Test) and microscopy. Meanwhile, the diagnostic 
methods for dengue fever used in both countries include RDT and Hemagglutination 
Inhibition (HI) using an ELISA reader. The timeline presented in Tables 1 and 2 indicates 
that the use of PCR in both countries began after 2010.  
 
Table 2. Diagnostic methods for dengue fever over time in Indonesia 

Year Diagnostic 
method 

Disease Application Reference 

1999 ELISA Dengue Seroprevalence studies Perlmann et al., 
2000 

2000s PCR Dengue Urban hospitals Aryati et al., 2013 
2015–
present 

PCR + RDT Dengue Urban hospitals, outbreak 
investigations 

Babin et al., 2021 

 
This scientific review summarizes existing literature to explore the infection 

mechanisms of malaria and dengue fever, and outlines the available methods for diagnosing 
both diseases. By drawing on ongoing research into diagnostic tools, this study aims to 
contribute to a comprehensive understanding and the development of more advanced 
diagnostic technologies. 

 

2. Methods 
 
This study is designed as a narrative review, synthesizing and critically analyzing 

existing literature on malaria and dengue diagnostic approaches, particularly in the context 
of Indonesia and Nigeria. The methodology used in this paper is based on sensing 
techniques, which include two approaches: a microscopy-based sensor for malaria 
diagnostics and a biosensor for dengue fever detection. For malaria diagnostics, this paper 
utilizes sensing methods involving Artificial Intelligence (AI), which are still under active 
development. Meanwhile, advancements in early detection methods for dengue fever are 
explored through biosensor technology. 

 
2.1 Malaria diagnostics using AI 

 
In malaria diagnostics using AI, this paper refers to AIDMAN (Artificial Intelligence-

Based Object Detection System for Malaria Diagnosis) as the main reference, as it represents 
one of the most comprehensive and clinically applicable deep learning studies to date. The 
methodology used in AIDMAN is outlined as follows: 

 
2.1.1 Data collection and processing 

 
The referenced study by Liu et al. (2023) used the SmartMalariaNET dataset for 

training. A total of 1,822 thin blood smear images were collected from 140 patients at 
clinical health facilities, specifically the Sierra Leone–China Friendship Hospital and Rokupa 
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Government Hospital, both located in Freetown, Sierra Leone. The images were captured 
using smartphone cameras through microscope lenses, reflecting real-world, resource-
limited conditions. All images were segmented into small patches using bounding boxes 
generated by YOLOv5. Each patch was annotated by three microscopy experts based on the 
presence or absence of Plasmodium infection. These labeled data were used for training and 
evaluating the classification model (Liu et al., 2023). 

 
2.1.2 Cell detection using YOLOv5 

 
YOLOv5 (You Only Look Once version 5) is a single-stage object detection algorithm 

that processes the entire image in one pass to detect multiple objects simultaneously. 
Compared to two-stage detectors like Faster R-CNN, YOLOv5 is faster and sufficiently 
accurate, making it ideal for real-time medical applications (Liu et al., 2023). Its primary 
role in this methodology is to detect and locate red blood cells (erythrocytes) in the thin 
smear images captured by smartphones. YOLOv5 generates bounding boxes around 
detected cells and crops them into image patches for further classification. It can detect 
intact and overlapping cells while ignoring irrelevant background regions or staining 
artifacts (Liu et al., 2023). 

 
2.1.3 Cell classification using AAM (Attentional aligner model) 

 
The extracted patches are then classified using a Transformer-based model known as 

AAM (Attentional Aligner Model). AAM is a deep learning model specifically designed to 
classify cells in medical images, particularly to identify Plasmodium-infected cells. It 
employs an attention mechanism to learn visual features that distinguish infected from 
uninfected cells. AAM integrates a multi-scale feature extractor, a local context aligner, and 
a multi-head attention mechanism to recognize unique characteristics of malaria parasites 
(Liu et al., 2023). The multi-scale feature extractor is a component that extracts features 
from images at various levels of detail (scales). Its function within the AAM model is to 
analyze blood cell images from small to large scales. At a small scale, it can detect fine details 
such as the dark nucleus of the parasite. At a medium scale, it can identify the purple ring 
structure of Plasmodium. At a large scale, it captures the overall shape of the cell (Liu et al., 
2023). 

The local context aligner is a component that adjusts and aligns local information from 
different scales using a Transformer. The functions of the local context aligner in AAM (Liu 
et al., 2023) are to integrate information from different scales to avoid conflicts, to help 
differentiate between actual parasites and noise (such as stains or lighting artifacts), and to 
use pixel positioning to understand the spatial location of features. The multi-head attention 
mechanism is part of the Transformer that allows the model to focus on multiple important 
regions of the image simultaneously. The functions of multi-head attention in AAM (Liu et 
al., 2023) are to give special "attention" to areas of the image most likely to indicate 
infection, to analyze information from multiple perspectives in parallel, and to reduce the 
influence of irrelevant elements and enhance significant ones. 
 

2.1.4 Image-level diagnosis using CNN and clinical validation 
 
To reduce false positives caused by uninfected cells that resemble infected ones, a 

Convolutional Neural Network (CNN) is used for whole-image diagnosis. The CNN receives 
a heatmap composed of the top 25 patches (with the highest infection probability scores) 
previously classified by AAM. These patches are reconstructed into a mosaic image that the 
CNN uses to determine whether the image contains Plasmodium parasites (Liu et al., 2023). 
To evaluate the real-world effectiveness of AIDMAN, clinical validation was conducted using 
new blood smear images from 64 patients. AIDMAN's diagnostic results were then 
compared with expert microscopic diagnoses and Rapid Diagnostic Tests (RDTs). 
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Fig. 1.  Methodology used by AIDMAN in this study  

(Liu et al., 2023) 

 
2.2 Biosensor methods for dengue fever 

 
Sensor-based technology methods have been widely developed with various 

advantages. Sensors that incorporate biological components such as antibodies or DNA are 
called biosensors. In their development, there are various biosensor reading methods, such 
as electrochemical, optical, or magnetic. Electrochemical biosensors detect signal changes 
caused by the interaction between biological molecules and the sensor surface (Figueroa-
Miranda et al., 2021; Nate et al., 2022; Singh et al., 2019; Yang et al., 2015). 

In the development of biosensor technology, there are several main components in its 
working principle, namely the target, recognition element, transduction element, and 
working electrode. The target is the element that represents the final objective of the 
biosensor reading or measurement. The recognition element is the component that 
specifically binds to the target. The transduction element is the component that converts 
the biochemical interaction between the target and the recognition element on the 
biosensor surface into a signal that can be analyzed and measured. This transduction 
element is also referred to as the reading method; for example, in the case of an 
electrochemical biosensor, the signal will be in the form of an electronic signal. The working 
electrode is the biosensor surface where the recognition element is embedded and where 
the electrochemical reaction between the target and the recognition element takes place. 
 
3. Results and Discussion 

 
3.1 Malaria diagnosis using AI 

 
In the study by Liu et al. (2023), a large dataset for cell classification was obtained, 

consisting of 5,654 image patches taken from 1,822 thin blood smear images. The dataset 
for blood smear image diagnosis using CNN for overall classification based on heatmaps 
from patches comprised 496 images. 
 
Table 3. Dataset for patch and CNN image classification  
Dataset Patch classification CNN image classification 
Training 3,393 297 
Validation 1,131 99 
Testing 1,130 100 

(Liu et al., 2023) 
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The study results show that a tiered approach starting with data collection, followed by 
detection using YOLOv5, classification using AAM, and blood smear image diagnosis using 
CNN achieves very high accuracy, both at the cell level and the overall blood smear image 
level. In the cell detection stage, YOLOv5 was able to recognize and locate red blood cells 
with an average accuracy of 90.8% (Liu et al., 2023). This indicates good performance even 
under image conditions with visual disturbances or noise, such as overlapping cells and 
uneven staining. For patch classification, AAM showed significant accuracy results, reaching 
98.62%, with an AUC (Area Under Curve) value of 99.92% (Liu et al., 2023). An AUC close 
to 1 means that patch classification using AAM has high quality. This demonstrates that the 
combination of the feature extractor, local context aligner, and multi-head attention in AAM 
can effectively distinguish between infected and non-infected cells, even with image 
artifacts or lighting effects. 

However, since most patches in a blood smear image are negative, directly applying 
AAM to the entire image results in a high false-positive rate (Liu et al., 2023). Therefore, 
adding CNN for final diagnosis at the image level strengthens the system and successfully 
reduces these errors. CNN uses a heatmap (based on color) compiled from the 25 patches 
with the highest scores and achieves a diagnostic accuracy of 97% with an AUC of 98.84%, 
demonstrating the model's ability to handle diagnosis on whole smear images (Liu et al., 
2023). 

Based on the comparison of accuracy using different malaria diagnostic methods, 
AIDMAN achieved an accuracy of 98.44% when compared to microscopy, which is 
considered the gold standard for malaria diagnosis. This validation demonstrates that the 
AIDMAN system is reliable and can be used as an alternative diagnostic tool, especially in 
areas with limited resources, both in terms of human personnel and equipment. Overall, the 
integration of YOLOv5, AAM, and CNN in AIDMAN not only provides an accurate solution 
for malaria diagnosis but also offers practicality and time efficiency, as it is capable of 
processing a single image in approximately 1 second. This makes AIDMAN highly feasible 
as a diagnostic support tool in field settings. Clinical validation of the AIDMAN system 
conducted by Liu et al. (2023) involved 64 new patient samples not included in the training 
dataset. The results were compared with microscopic examination by three highly 
experienced experts and also with RDT (Rapid Diagnostic Test) results. 
 
Table 4. Comparison of accuracy using different malaria diagnostic methods 

Detection method Number of patients Total Accuracy (%)  
 Positive Negative  

 

Microscopic testing Positive 34 0 34 100  
Negative 0 30 30 

RDT Positive 32 1 33 95.31  
Negative 2 29 31 

AIDMAN Positive 33 0 33 98.44  
Negative 1 30 31 

(Liu et al., 2023) 

 
3.2 Biosensor development for early detection of dengue fever 

 
The measurement of anti-dengue IgG and/or IgM antibodies using antibody-capture 

ELISA is the most commonly used method for confirming a dengue fever diagnosis. ELISA is 
relatively easier to perform compared to other diagnostic techniques; however, it requires 
laboratory equipment and trained personnel (Soh et al., 2016). In addition, antibody titer 
does not rise immediately; thus IgM ELISA has <50% sensitivity for at least 4 days after 
symptom onset in primary infections. As a result, IgM ELISA is less useful for clinical 
management and is mainly supportive in confirming a diagnosis (Hunsperger et al., 2016). 
The use of electrochemical systems in biosensor development offers a more user-friendly 
detection approach, as biosensors can be applied in the field and require only a very small 
sample volume (~50 μL) (Palomar et al., 2020). 
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This study leverages the latest advances in nanofabrication to develop an efficient 
biosensor protocol applicable for detecting a wide range of biomolecules. Palomar et al. 
(2020) developed a biosensor for NS1 detection using gold electrodes as an early detection 
method for dengue fever. After the optimization stage, the developed biosensor showed 
excellent reproducibility and sensitivity compared to other detection tool development 
reports in the literature (Nawaz et al., 2018; Palomar et al., 2020; Santos et al., 2018; Silva 
et al., 2015). The Limit of Detection (LOD) achieved in the study by Palomar et al. (2020) 
reached 1 × 10^−12 g/mL. Differential Pulse Voltammetry (DPV), used as the detection 
technique, enabled measurement of targets at very low concentrations due to its high 
sensitivity. Based on this low LOD, the biosensor developed in the study shows strong 
potential for early detection of dengue virus infections. 
 

3.2.1 Stability and selectivity testing of dengue 
 
Selectivity testing in the study was carried out by evaluating the biosensor against a 

variety of non-specific targets. Gold electrodes modified with dengue antibodies were tested 
against solutions of bovine serum albumin, urease, cysteine, rabies antibodies (IgG), and 
dengue-specific toxins. Based on these tests, the biosensor did not show any significant 
response to non-specific targets. Stability testing was also performed on the biosensor, 
which is a critical parameter in electrochemical systems, as it validates the obtained results 
and eliminates the possibility of false positives caused by sensor instability. The biosensor 
in this study maintained a stable signal even after more than 10 consecutive measurements, 
thus confirming that the response was due to DENV-NS1 detection. 
 
3.2.2 Detection of dengue toxins in human serum 

 
The study then proceeded to test the biosensor using human serum. Three different 

concentrations of dengue virus in human serum (0.01, 1, and 100 ng/mL) were tested 
across several electrodes. The results showed consistent and comparable outcomes. 
According to the literature, the required NS1 concentration in human serum for dengue 
detection ranges from 0.001 to 2 μg/mL (Wasik et al., 2018). This finding demonstrates the 
potential of the biosensor for detecting dengue toxins in real samples. The biosensor-based 
detection method is very simple and fast, making it ideal as a point-of-care device (Palomar 
et al., 2020). 

 
3.3 Comparison between technologies 

 
AI-based malaria diagnosis systems (such as AIDMAN) and electrochemical biosensors 

for dengue each offer distinct advantages. AI enables fast and automated classification of 
blood images, making it highly suitable for resource-limited settings since it only requires a 
microscope and a smartphone. On the other hand, biosensors provide rapid detection based 
on serum samples without the need for image analysis or model training. The combination 
of these approaches holds great potential for integrated application in infectious disease 
surveillance systems in tropical countries. 

Moreover, when compared with other studies in the literature, AIDMAN shows 
superior performance in several aspects of malaria detection. This highlights the system’s 
advantage over other existing research-based approaches. 
 
Table 5. Advantages of the AIDMAN system compared to other AI-based systems 

Aspect Study 
Liu et al. 
(2023) 

Saba et al. 
(2024) 

Kareem et 
al. (2025) 

Akyirem et 
al. (2024) 

Abdul et 
al. (2022) 

Musa et al. 
(2023) 

Data type Thin blood 
smear, 
smartphone 
camera 

Thick 
blood 
smear 

Digital 
slide 
dataset 

RGB blood 
image 

Thick 
blood 
smear 

Thick 
blood 
smear 
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Main 
objective 

Whole-image 
diagnosis 
(image-level) 

Parasite 
species 
detection 

Automate
d web-
based 
detection 

Infected 
cell 
classificati
on 

Lightweig
ht model 

Object 
detection 

AI method YOLOv5 + 
Transformer + 
CNN 

Classificati
on CNN 

VGG16 
(deep 
CNN) 

CNN + 
Transfer 
Learning 

Lightweig
ht CNN 

CNN + 
YOLO 

Accuracy Image-level: 
97%, AUC: 
98.84% 

Cell 
classificati
on: 99.5% 

97% 96.9% ~96% ~98% 
(dataset-
dependent) 

Clinical 
validation 

Yes (64 real 
patient 
samples) 

No No No No No 

Real 
implementa
tion 

Smartphone-
compatible 

Lab-only Website-
based 

Not yet 
implement
ed 

Potential 
for 
embedde
d use 

No mobile 
applicatio
n 

Species 
detection 

No (only 
positive/negati
ve) 

Yes No No No No 

AI 
interpretabi
lity 

Yes (top-25 
patch 
heatmap)  

No No No No No 

Key 
strengths 

Comprehensiv
e system, 
heatmap, 
clinical 
validation, 
field-ready 

High 
patch-level 
accuracy, 
species 
detection 

Easy to 
use (web-
based) 

Adaptive 
and 
lightweigh
t 

Suitable 
for low-
resource 
devices 

Fast 
YOLO-
based 
detection 

Limitations Does not 
detect species, 
only thin 
smears 

No clinical 
validation, 
no image-
level 
diagnosis 

Requires 
internet 
(no offline 
mode) 

Not tested 
in real-
time 

No 
heatmap 
available 

Not tested 
on 
smartphon
es 

 
3.4 Limitations and future directions 

 
This study is a narrative review that focuses on two main technological approaches. 

Due to resource constraints, not all diagnostic technologies are comprehensively discussed, 
such as LAMP (Loop-Mediated Isothermal Amplification) (Notomi et al., 2000) or CRISPR-
based biosensing (Nguyen et al., 2020). Moreover, although AIDMAN and NS1 biosensors 
demonstrate high performance, their real-world application remains limited by 
infrastructure, initial costs, and training requirements. Further research is recommended 
to explore the integration of these technologies into unified detection systems, as well as to 
conduct cost-benefit evaluations in various local contexts in Indonesia and Nigeria. 

 

4. Conclusions 
 
The performance of the AI system for malaria is very high, both at the patch 

classification level and the whole image diagnosis level, with a patch classification accuracy 
of 98.62%, AUC: 99.92%, and a smear image diagnosis accuracy of 97%, AUC: 98.84%. This 
system has been proven to have great potential for implementation in resource-limited 
areas, especially in Africa, as it does not require complex laboratory infrastructure or a large 
number of experts. Electrochemical biosensor technology can achieve a very low limit of 
detection, making it ideal for the early detection of dengue fever. 
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