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ABSTRACT  
Background: Hydrogen peroxide (H2O2) is mostly used in the water and dairy industries for sterilization and 
preservation purposes. However, excessive H2O2 residues in milk and tap water pose a health risk. Therefore, 
accurate measurement of H2O2 residue is essential.  Methods: This study explores the potential of a screen–
printed gold electrode (SPGE) as a sensor for H2O2 sensor using the electrogenerated chemiluminescence (ECL) 
method of luminol in the electrolyte of phosphate buffer solution (PBS) under alkaline condition (pH of 9). 
Findings: The detection of H2O2 was achieved a linear calibration equation of y = 0.0215[H2O2] + 0.2006 within 
a concentration range of 0.5 to 200 µM (R2 = 0.9998), demonstrating reliable ECL measurements.  Conclusion: 
The analytical performance evaluation of H2O2 sensor exhibited a low limit of detection (LOD) of 3.06 µM, a limit 
of quantification (LOQ) of 10.20 µM, and good measurement repeatability, with a relative standard deviation 
(%RSD) of 6.03%, which is below ⅔ of the Horwitz coefficient of variation (9.85%). Unmodified SPGE offers 
simplicity, ease of use, a stable surface, and good conductivity while maintaining excellent performance. 
Novelty/Originality of this article: The application of the ECL method on SPGE for H2O2 detection offers 
excellent analytical performance, making it a promising approach for monitoring H2O2 residues in the water and 
dairy industries, with a recovery from 83.83 to 106.01%. 
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1. Introduction  
 

H2O2 is a strong oxidizing and reducing chemical compound widely used in water 
treatment plants through advanced oxidation processes to decompose organic and 
inorganic contaminants (Rayaroth et al., 2022; Rismetov et al., 2014). In the dairy industry, 
H2O2 is employed as a disinfectant and preservative by activating the lactoperoxidase 
system (Ivanova et al., 2019). However, H2O2 residual can cause damage to macromolecules, 
necessitating strict regulation of its permissible levels (Syukur et al., 2023). 

Several methods for H2O2 detection have been successfully and reliably reported, 
including high-performance liquid chromatography (HPLC) (Ivanova et al., 2019) and 
chemiluminescence sequential injection analysis (SIA) (Jones & Lee, 2019). However, these 
methods often require long measurement times, involve high costs, and demand extensive 
maintenance (Syukur et al., 2023). The limitations can be addressed by the electrogenerated 
chemiluminescence (ECL) method that combines electrochemical and optical methods, 
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making it a powerful device for rapid and precise measurements. Its advantages, including 
high sensitivity, low background noise, and simple instrumentation, make ECL a promising 
alternative for H₂O₂ detection (Rahmawati et al., 2021). 

The ECL is a unique technique that combines an optical sensor (chemiluminescence) 
with an electron transfer process occurring on the electrode surface  (Rahmawati, Einaga, 
et al., 2022). Luminophore agents such as luminol  (Irkham et al., 2021; Rahmawati, 
Saepudin, et al., 2022),  Ru(bpy)32+ (Fiorani et al., 2019; Irkham et al., 2016, 2020), and 
quantum dots (Valenti et al., 2018) are used to generate photon emission through redox 
reactions. Luminol is selected due to its widespread application as a chemiluminescent 
agent, offering advantages such as  low cost, chemical safety, and better solubility in alkaline 
aqueous conditions (Rahmawati et al., 2021). The ECL of luminol is produced through two 
main pathways: annihilation and co-reactant pathways (Rahmawati et al., 2024). The 
annihilation pathway produces strong light emission, this pathway involves aprotic and 
deoxygenated solvents for example, DMSO and p-benzoquinone (Garcia-Segura et al., 2012). 
Meanwhile, the co-reactant pathway involves chemical species such as H2O2 (Fatah et al., 
2024), S2O8

2– (Irkham et al., 2016), C2O6
2– (Irkham et al., 2021), TPrA and C2O4

2– (Valenti et 
al., 2018), which produce radicals that react with luminophore species in electrochemical 
reaction, resulting in strong ECL intensity (Irkham et al., 2024). This pathway is compatible 
with aqueous solvent, enabling multi-analyte detection of various substances, including 
H2O2 (Rahmawati et al., 2025), NaClO (Rahmawati et al., 2024), Glucose (Tian et al., 2017), 
lactate (Bhaiyya et al., 2021), cholesterol (Carvajal et al., 2012), pesticide (Irkham et al., 
2024), heavy metal (Harmesa et al., 2024),  immunoassays (Rahmawati et al., 2021) and 
biosensors (Fiorani et al., 2019; Rahmawati, Einaga, et al., 2022). 

Gold electrodes have been widely used for detecting glucose, cholesterol, and H2O2 by 
the ECL method (Ballesta-Claver et al., 2011; Liu et al., 2008; Syukur et al., 2023). Gold is an 
inert material with excellent conductivity, high stability (Koç et al., 2021), low background 
current (Syukur et al., 2023), and enhanced activity in base condition at oxidation potential 
(Prehn et al., 2012). Additionally, gold electrodes can be modified with different structures 
(Dehdari Vais & Heli, 2016), thiol (Rong et al., 2010), and poly-luminol coating for various 
analytical applications (Carvajal et al., 2012). Gold possesses distinct characteristics in the 
form of nanowires (Patella et al., 2024), nanolayers (Dehdari Vais & Heli, 2016), and 
modifications with polyamic acid (Zamfir et al., 2016) or 1,4-benzoquinone (Laroussi et al., 
2021), which can be immobilized using electrochemical methods to achieve a low limit of 
detection (LOD) for H₂O₂ detection. However, these modifications are costly and 
complicated to implement. Screen-printed electrodes (SPEs) for point-of-care testing have 
unique properties, including miniaturization, cost-effectiveness, high sensitivity, and fast 
measurement capability (Syukur et al., 2023). In this preliminary study, the combination of 
SPEs with gold (SPGE) is explored as a promising approach for H2O2 detection using the ECL 
method. This approach pulls the advantages of both SPE technology and gold’s superior 
electrochemical properties, providing insights into its potential application for future 
analytical developments. 

 
2. Methods  
 
2.1 Materials 
 

Analytical grade materials used were luminol (3-aminophthalhydrazide) supplied from 
Tokyo Chemical Industry, while potassium ferricyanide (K3[Fe(CN)6]) was supplied from 
WAKO. 30% hydrogen peroxide (H2O2), and all other chemicals were supplied from Sigma-
Aldrich. A 10 mM stock solution of luminol was prepared by dissolving luminol in 0.1N 
NaOH. Double-distilled water was obtained using Direct-Q3 UV system manufactured by 
Merck Millipore. 
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2.2 Instrumentations 
 
The electrochemical measurements were carried out using potentiostat(PGSTAT204) 

with connector (DSC) and SPGE (250AT) from Metrohm with a gold, a silver and a platinum 
were used as working, reference, and auxiliary electrodes, respectively. The ECL signals 
were detected using a photomultiplier tube (PMT) (H11902-20) from Hamamatsu with 
instrumentation system from a published journal (Syukur et al., 2023). 

 
2.3 Electrochemically active surface area (ECSA) study 

 
The ECSA of SPGE were studied by dropping 40µL of 1mM K3[Fe(CN)6] in the electrolyte 

of 0.1M phosphate buffer solution (PBS) (pH 9) using cyclic voltammetry (CV) technique 
from –0.4 to +0.6 with various scan rates from 0.050 to 0.175 V/s. The ECSA was obtained 
using the Randles-Sevcik formula in equation 1 (Annisa et al., 2024): 

 

𝐴 =  
𝑖𝑝

2.69𝑥105.𝑛
3
2.𝐷

1
2.𝐶.𝑉

1
2

=  
𝐾

2.69𝑥105.𝑛
3
2.𝐷

1
2.𝐶

     (Eq. 1) 

 
Where, A is the surface area of electrode, n is the electrons transferred number, ip is the 
peak current, D is the diffusion coefficient of K3[Fe(CN)6] (D = 7.6 x 106 cm2 s-1), C is the 
concentration, V is the scan rate and K is slope of plot ip vs V½. 

 
2.4 ECL of luminol – H2O2 study 

 
The ECL behavior of SPGE was carried out by dropping 40µL of 1 mM luminol with 

various concentrations of H2O2 solution in 0.1M PBS (pH9) using CV technique with scan 
rates from 0.1 V/s. During CV measurement, the ECL intensity was detected by using the 
PMT voltage of 0.8 V.  The ECL instrument setup for H₂O₂ detection is shown in Figure 1. 

 

 
Fig. 1 The ECL instrument setup for H₂O₂ detection 
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3. Results and Discussion 
 
3.1 The electrochemical behavior of SPGE 
 

The electrochemical behavior of SPGE surface was studied using 1mM K3[Fe(CN)6] in 
0.1 M PBS as the electrolyte at various scan rates to explore the redox activity of the 
electroactive species. The reaction was found to be reversible, as shown in Figure 2a. The 
oxidation-reduction reaction of K3[Fe(CN)6] is as follow: 

 
                                                       [Fe(CN)6]3–+e ⇌ [Fe(CN)6] 4–                                                                                    (Eq.2) 
 

The oxidation current value of [Fe(CN)6]3– (Ipa) was observed at approximately +0.2 V, 
while the reduction current value of [Fe(CN)6]4– (Ipc) appeared around +0.05 V. These 
values were obtained to explore whether the electron transfer mechanism was diffusion-
controlled or adsorption-controlled. The oxidation and reduction current of SPGE were 
higher than those of the screen-printed carbon electrode (SPCE), indicating that SPGE 
exhibited greater conductivity (Figure 2b).  
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Fig. 2 (a) Cyclic Voltammogram of 1mM K3[Fe(CN)6] in 0.1M PBS (pH9) at various scan rates on the 

SPGE surface; (b) Comparison of CV responses of 1mM K3[Fe(CN)6] on SPGE and SPCE; (c) 
Calibration curve using Current vs. √scan rate plot; (d) Current vs. scan rate plot on SPGE 

 
The dependence of √scan rate ((V/s)0.5) plot (x-axis) and Ip (y-axis), shown in Figure 

2c, defines the electron transfer mechanism as diffusion-controlled. This was confirmed by 
the linearity of the Ipa - (V/s)0.5 plot (R2 = 0.9972), which was higher than that of the Ipa - 
V/s plot (R2 = 0.9952) (Figure 2d). The ECSA of SPGE was determined using the slope of the 
Ipa - (V/s)0.5 plot, calculated with the Randles-Sevcik equation. The ECSA of SPGE was found 
to be 12.33 mm2, which was significantly larger than the ECSA of SPCE (6.07 mm2) (Syukur 
et al., 2023). 
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3.2 The Mechanism of luminol ECL on the SPGE surface for H2O2 detection 
 

The ECL and CV signals of luminol with and without H2O2 in the PBS electrolyte on SPGE 
are shown in Figure 3. The CV signals of H2O2 and PBS indicate the oxidation of the gold 
electrode, forming gold (III) hydroxide (Au(OH3) in a basic condition, at approximately +0.6 
V as an insert in Figure 3a. Additionally, the oxygen evolution reaction (OER) occurs beyond 
+0.8 V by producing oxygen. The reverse potential at +0.15 shows the reduction of Au(OH)3 

(Cui et al., 2004; Lović et al., 2017; Prehn et al., 2012; Syukur et al., 2023). The ECL signals 
of H2O2 and PBS exhibit noise signals, therefore, H2O2 cannot be measured without luminol. 
In a basic condition (pH 9), luminol dissociates in the presence of hydroxide, forming 
luminol anions. The CV signals show the oxidation of luminol anions (L–) with or without 
H2O2, producing luminol oxyl radicals (L•–) at an initial potential of 0.28 V, reaching a 
maximum potential of around 0.4 V (Cui et al., 2004). The oxidation peak of luminol anions 
in the presence of H2O2 exhibits a decrease in current peak due to the competition between 
luminol anion oxidation and H2O2 at 0.49 V, which adsorbs onto the gold surface electrode. 
Additionally, the formation of Au(OH)3 adsorption is observed from +0.6 to +0.8 V  (Díaz-
Ortega et al., 2014; Gerlache et al., 1997). The reduction current peak of Au(OH)3 decreases, 
as Au(OH)3 reacts to generate L•– when the potential is reversed (Wahyuni et al., 2015). The 
electrocatalytic mechanism involving the electrolyte, luminol, and H2O2 can be described as 
follows: (Cui et al., 2004; Garcia-Segura et al., 2012; Gerlache et al., 1997): 
LH2 + OH–→ LH– + H2O 

LH– → L•– + H+ + e–      Ep = +0.40 V 
H2O2 ⇌ HO2– + H+  
HO2–  → HO2• + e– ⇌ O2•– + H+   Ep = +0.49 V 
4 OH–→ O2 + 2H2O + 4e–   Ep = +1.0 V 
Au + 3OH–→ Au(OH)3 + 3e–     Ep = +0.6 V 
2Au(OH)3 + 2e–→ 2Au + 2H2O + O2 +2OH– Ep = +0.15 V 
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Fig. 3 (a) Cyclic Voltammogram; (b) ECL signals of 1mM luminol in 0.1M PBS (pH9) containing 50 

µM H2O2 on the surface SPGE 

 
The ECL of luminol with or without H2O2 occurs via two distinct pathways. The ECL of 

luminol without H2O2 begins with the formation L•– at an initial potential 0.28 V (ECL1). 

These radicals react with the dissolved oxygen (O2), generating superoxide radical anion 
(O2

•–) and diazo quinone (L) through a propagation reaction. The ECL1 signal increases 
significantly due to nucleophilic attack between L•– and O2•– at carbonyl group, forming 
luminol endoperoxide (LOO2–). A further nucleophilic attack by peroxide on another 
carbonyl group leads to the formation of LOO•– followed by the loss of an N2 bond. The 
resulting LOO2– species undergoes decomposition to form 3-aminophthalate dianion (AP2–) 
in its excited triple state (AP2–*(T1)), which subsequently transitions into the excited single 
state (AP2–*(S1)) via spin-flip process by a high-energy electron transfer reaction, as the 
excited electron returns to its ground state (AP2–*(S0)), ECL emission is produced at a 
wavelength of 425 nm (Garcia-Segura et al., 2012). During the reverse potential sweep, the 
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second ECL pathway (ECL2) occurs due to the Au(OH)3 adsorption on the electrode surface. 
The Au(OH)3 species interacts with L•–  radicals via nucleophilic attack, while OER 
simultaneously produces O2•–  through a propagation reaction with L•–. this process 
regenerates metallic gold (Au) and produces ECL intensity via the transitions of AP2–*(S0) 
(Cui et al., 2004). 

The ECL intensity of luminol in the presence of H2O2 was significantly higher than in its 
absence (Rahmawati, Saepudin, et al., 2022), This enhancement was primarily attributed to 
the ECL1 reaction, where L•– reacts with O2•–, which originates from the oxidation of HO2–. 
The propagation reaction of O2 and the reaction of L with HO2– to produce luminol 
hydroperoxide (LOOH–) before the oxidation potential of HO2– is reached. The effect of 
Au(OH)3 adsorption on ECL2 was minimal, as its intensity merged with the ECL contribution 
from OER effect. Therefore, the ECL1 and ECL2 were selected for H2O2 measurement. The 
ECL mechanisms of luminol in the absence and presence of H2O2 can be described as follows 
(Cui et al., 2004; Garcia-Segura et al., 2012): 
ECL1:  
L•– + O2 → L + O2

•–   
L•– + O2•– → LOO•–→ LOO2– → AP2–*(T1) + N2 
L + HO2– → LOOH– → AP2–*(T1) + N2 

ECL2: 
Au(OH)3 + L•–+ OH–→ Au + N2 + AP2–*(T1) + 2H2O 
L•– + O2 → L + O2•–      (O2 from OER) 
L•– + O2•– → LOO•–→ LOO2– → AP2–*(T1) + N2 

ECL excited reaction: 
AP2–*(T1) → AP2–*(S1) → AP2–*(S0) + hv 

 
3.3 The analytical performance of H2O2 detection 
 

The analytical performance of the H2O2 sensor’s linearity was evaluated by measuring 
the ECL signal of 1 mM luminol in solutions with varying H2O2 concentrations (0, 0.5, 1, 5,10, 
25, 50, 100, 200) in 0.1M PBS (pH9) as shown in Figure 4a and 4b as an insert. The 
calibration curve of ECL1 (Figure 4c) displayed the linear equation of ECL1 intensity was 
obtained y = 0.0215[H2O2] + 0.2006, while the ECL2 intensity (Figure 4d) of y = 0.0033[H2O2] 
+ 0.0423. The sensitivity of ECL1 was better than ECL2 due to the slope value of ECL1 was 
higher. The sensitivity of ECL1 of 17.14 a.u µM–1 dm-2, while ECL2 of 2.63 a.u µM1 dm-2. The 
LOD was achieved at ECL1 of 3.06 µM and ECL2 of 5.43 µM, while the LOQ was achieved at 
ECL1 of 10.20 µM and ECL2 of 18.11 µM. The result of sensitivity, LOD, and LOQ indicated 
that ECL1 was selected to measure H2O2 due to better performance and the highest ECL 
signals. ECL1 is the primary reaction between luminol and H2O2, while ECL2 occurs due to 
the effect of Au(OH)3 adsorption, OER, and residual L•–. The comparison of H2O2 detection at 
various methods and electrodes can be seen in Table 1.  

 
Table 1.  The comparison of H2O2 detection at various of methods and electrodes 

Electrodes method LOD (µM) Conc. range (µM) ref 
Pedot/rGO/AuNPs/HRP/SPGE CA 0.08 0.5 – 200 (Mercante et al., 

2017) 
Au (Poly) CA 10.00 10 – 60000 (Miah & Ohsaka, 

2006) 
nAu/Au CA 7.90 50 – 800 (Dehdari Vais & 

Heli, 2016) 
Benzoquinone/Au CV 4 100 – 3000 (Laroussi et al., 

2021) CA 2.3 100 – 500 
Au Nano Wire CA 3.21 10 – 10000 (Patella et al., 

2024) 
PB/BDD-SPE CA 4.92 40 – 100 (Rahmawati et al., 

2025) 
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BDD-SPE ECL 2.59 1 – 100 (Rahmawati et al., 
2024) Au-PANI/BDD-SPE ECL 2.08 

Luminol-AuNP/cys/Au ECL 0.10 0.3 – 1000 (Cui et al., 2007) 
SPCE ECL 7.53 0.5 – 200 (Syukur et al., 

2023) Au /SPCE ECL 4.78 
SPGE (ECL1) ECL 3.06 0.5 – 200 This Work 
SPGE (ECL2) 5.43 
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Fig. 4 (a) The ECL signals of luminol containing H2O2 concentration levels with; (b) insert The ECL2 

signals. The calibration curve of; (c) the ECL1; (d) ECL2 signal on SPGE 

 
The analytical performance in terms of repeatability, reproducibility, and stability was 

assessed based on ECL signals of luminol in the presence of 50 µM H2O2, measured 7 times 
for repeatability, 4 times on different days for reproducibility, and 3 times in the 4th week 
for stability. The ECL Signals for H2O2 detection (Figure 5a) and the corresponding intensity 
plots (Figure 5b) for repeatability measurement on SPGE yielded a relative standard 
deviation (%RSD) of 6.03%, which falls within the acceptance criterion of < ⅔ CV Horwitz 
of 9.85% indicating good repeatability. The excellent reproducibility of H2O2 detection was 
confirmed with an RSD of 3.41% (Figure 5c), evaluated using a two-sample t-test comparing 
the ECL intensity on different days. The calculated t-value was 0.139, with a p-value of 0.892, 
compared with t-table value (0.05, 6) of 2.447. Since t-value ≤ t-table, the results confirmed 
no significant difference between measurements, demonstrating excellent reproducibility 
(Faridah et al., 2020). The stability of H2O2 detection over different weeks showed a %RSD 
of 9.74% (Figure 5d). t-value of stability was lower than t-table value (0.05, 4) of 2.776 as 
shown in Table 2, indicating no significant difference over time. 

 
Table 2.  The t-test of reproducibility on different days and stability in 4th week for H2O2 detection 
Performance Reproducibility Stability 

1st week 2nd week 3rd week 4th week 
t-value 0.139 Control 1.686 0.366 1.435 
t-table 2.447  2.776  2.776  2.776  
p-value 0.892 0.103 0.518 0.152 

Term of acceptance: p-value > (α = 0.05) and t-value < t-table (α = 0.05) 
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Fig. 5 (a) The ECL signals of luminol in containing of H2O2 with; (b) plot The ECL signals for 
repeatability; (c) reproducibility; (d) stability 

  
The selectivity of ECL measurement for H2O2 detection on SPGE was evaluated using 1 

mM luminol and 50 µM H2O2 solution in 0.1M PBS (pH9) with potential interference from 
Cl–, NH4+, CO32–, SO42– and glucose at 100 µM, measured 3 times (Figure 6a).  The results 
demonstrated good selectivity in the presence of Cl– and NH4+ (Figure 6b), while CO32– and 
SO42–significantly decreased the ECL intensity. Glucose increased ECL intensity due to the 
interaction of its hemiacetal group with Au(OH)3, forming D-gluconate radical, which could 
react with luminol anions (Opallo & Dolinska, 2018). CO32– serves as a scavenger in H₂O₂ 
systems, interfering with luminol reaction and quenching radicals from H2O2. SO42- react 
with radicals, generating sulfate radicals (SO₄•⁻), which trigger a propagation reaction 
(Syukur et al., 2023). This process reduces available O2•– and disrupts the ECL reaction, 
which leads to a decline in ECL intensity and reduces sensor efficiency. To minimize 
interference, CO₃²⁻ and SO₄²⁻ concentrations should be controlled at ≤100 µM . 
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Milk and tap water samples were collected and spiked with H2O2 following the 
preparation and methods described previous study (Syukur et al., 2023). The ECL method 
was applied for H2O2 detection in milk and tap water using SPGE. Samples were spiked with 
H2O2 at concentrations of 50, 75, and 100 µM. To validate the method, a SPCE from Metrohm 
(DRP – 11L type) was used as a comparison (Syukur et al., 2023). The accuracy of spiked 
samples was determined by calculating the percent recovery, with an acceptable range of 
80 – 110%, as required by the Association of Official Analytical Chemists (AOAC) standard. 
The H2O2 recovery on SPGE showed good value, ranging from 83.83 to 106.01%, indicating 
reliable recovery. Table 3 presents a comparison of H2O2 recovery between SPGE and SPCE. 

 
Table 3.  The recovery of H2O2 spiking in milk and tap water samples on SPGE and SPCE 

Electrode Spike (µM) Tap water Milk 
Found (µM) Recovery (%) Found (µM) Recovery (%) 

SPGE 
(DRP-250AT) 

50 42.08 ± 8.60 84.16 ± 17.19 47.83 ± 3.88 95.67 ± 7.65 
75 79.51 ± 5.36 106.01 ± 7.15 71.98 ± 2.89 95.97 ± 3.85 
100 89.63 ± 6.48 89.63 ± 6.48 83.83 ± 1.74 83.83 ± 1.74 

SPCE 
(DRP–11L) 

50 45.74 ± 4.96 91.48 ± 9.92 48.70 ± 4.59 97.41 ± 9.18 
75 79.02 ± 1.06 105.35 ± 1.41 78.39 ± 3.75 104.52 ± 5.00 
100 93.91 ± 3.55 93.91 ± 3.55 96.12 ± 3.33 96.12 ± 3.33 

 

4. Conclusions 
 

The determination of H2O2 using ECL method on SPGE was successfully achieved, 
demonstrating high sensitivity and reliability.  The ECL1 intensity was selected as a 
detection signal, showing a strong linear relationship (R2 = 0.9998) with increasing H2O2 

concentrations, as represented by the calibration equation y = 0.0215[H2O2] + 0.2006. The 
method achieved a LOD of 3.06 µM, a LOQ of 10.20 µM, and a sensitivity of 17.14 a.u µM–1 

dm-2, indicating excellent analytical performance. The method also exhibited good 
repeatability, with %RSD ≤ ⅔ CV Horwitz. High reproducibility and stability as confirmed 
by a t-value ≤ t-table, indicating no significant variations across measurements. These 
results confirm the robustness and reliability of the proposed ECL-based SPGE sensor for 
H2O2 detection. Consequently, the method offers several advantages, including fast 
detection, simple operation, and high applicability for real sample analysis. Its effectiveness 
was validated in milk and tap water, with recovery rates ranging from 83.83 to 106.01%, 
meeting acceptable analytical standards. As this study represents a preliminary 
investigation, future research should focus on further optimization of sensor performance, 
long-term stability assessments, and validation with a wider range of real samples. 
Additionally, exploring potential miniaturization and integration into portable sensing 
devices could enhance the practical application of SPGE-based ECL sensors for on-site H₂O₂ 
monitoring in environmental and food safety applications.
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