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ABSTRACT  
Background: At this time electricity problems play an important role in increasing the demand for active and 
reactive power because the industry is increasing which requires increasing electrical power as well. Methods: 
One of the supporters of overcoming this problem will be an analysis of solving it. It is common for electrical 
engineering engineers to know about the stability of the power distribution system, which in the following 
analysis is an analysis of the selection of the critical angle of the power angle. Finding: As this power is electrical 
power which of course consists of active power, reactive power and complex power or apparent power. The 
three active power, reactive power, and apparent power are directly related to each other, meaning that active 
power is directly related to reactive power as well as directly related to apparent power. Conclusion: So the 
amount of active power is directly related to the size of the reactive power or directly related to the size of the 
apparent power. Novelty/Originality of This Study: This study presents a novel analytical approach to 
determining the critical power angle in power distribution systems, highlighting the direct interdependence 
between active, reactive, and apparent power to enhance system stability in response to increasing industrial 
electricity demand. 

 
KEYWORDS: critical angle of system stability; optimum active power; reactive power. 
 

 
1. Introduction    
 

The emergence of electric power is caused by the application of generated voltage and 
the presence of electric current within electrical devices. Based on this principle, in many 
electrical systems, the primary focus is on electric power. For instance, people are 
interested in the power generated by an alternator, the power input to an electric motor 
drive, or the power transmitted by a radio or television transmitter. Furthermore, in the 
case of an alternator, if the voltage is a function of time, then the resulting current will also 
be time-dependent, and its magnitude will be influenced by the components within the 
electrical device as well as those in the power grid connected to the alternator. 
 

2. Method 
 

The research employs a quantitative and experimental approach to analyze the 
relationship between voltage, current, and electric power generated in electrical systems, 
particularly focusing on alternator performance. The study begins with a comprehensive 
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literature review to establish a theoretical foundation concerning the principles of electric 
power generation, the time-dependent behavior of voltage and current in AC systems, and 
the influence of system components and grid interconnection on current magnitude. 
Simulation models are developed using tools such as MATLAB/Simulink or ETAP to observe 
how variations in system parameters—such as load impedance, frequency, and network 
configuration—affect the output power of an alternator. Experimental data is also collected 
from a laboratory setup involving a small-scale alternator connected to a variable load, with 
voltage and current measurements captured using digital oscilloscopes and power meters. 
The collected data is analyzed to determine the patterns and correlations between time-
varying voltage, resulting current, and the magnitude of active and reactive power. Special 
attention is given to evaluating system stability through parameters such as power angle, 
power factor, and power-angle (P-δ) curves. This methodology allows for a deeper 
understanding of how electrical dynamics influence power generation efficiency and system 
stability, as well as the identification of optimal operating conditions for maximum active 
power output without compromising system performance. 

 

3. Result and Discussion  
 
3.1 Power in sinusoidal steady state 

 
Based on an idealized condition, for a passive network consisting solely of inductive 

elements and subjected to a sinusoidal voltage of the form v=Vm sin 𝜔𝑡, the resulting 
current will have the form i=Im sin (𝜔𝑡 - 𝜋/2), the instantaneous power is then given by 
p=v.i=Vm.Im (sin 𝜔𝑡)(sin 𝜔𝑡 - 𝜋/2). Since sin (𝜔𝑡 - 𝜋/2)=- cos 𝜔𝑡 and using the identity 2 sin 
x cos x=sin 2x, the expression for power becomes  p=- ½ Vm.Im sin 2𝜔𝑡. The resulting 
waveform is illustrated in Figure 1 below. 
 

 

Fig. 1. Voltage, current, and power curves in the network in an ideal state of a purely inductive 
element 

Under ideal conditions, for an active network composed solely of capacitive elements 
and subjected to a sinusoidal voltage of the form v=Vm sin 𝜔𝑡, the resulting current will have 
the form i=Im sin (𝜔𝑡 + 𝜋/2), the instantaneous power is thus given by p=v.i=Vm.Im (sin 
𝜔𝑡)(sin 𝜔𝑡 + 𝜋/2). Since sin (𝜔𝑡 + 𝜋/2)=cos 𝜔𝑡, the power becomes p=v.i=Vm.Im sin 𝜔𝑡 cos 
𝜔𝑡 or equivalently, p=Vm.Im ½ sin 2𝜔𝑡=½ Vm.Im sin 2𝜔𝑡. The resulting waveform is 
illustrated in Figure 2 below. 
 

 
Fig. 2. Voltage, current, and power curves in a network in an ideal purely capacitive state. 
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Furthermore, under ideal conditions, for an active network composed solely of resistive 
elements and subjected to a sinusoidal voltage of the form v=Vm sin 𝜔𝑡, the resulting current 
will be i=Im sin 𝜔𝑡, Thus, the instantaneous power is given by p=v.i=Vm sin 𝜔𝑡 Im sin 𝜔𝑡, 
atau p=Vm.Im sin2 𝜔𝑡. Using the trigonometric identity sin2x=½ (1 – cos 2x), the power 
expression become p=½ Vm.Im (1 – cos 2𝜔𝑡). In this case, it can be observed that the power 
has a frequency twice that of the voltage or current. Moreover, the power is always positive 
and varies from zero to a maximum value of Vm.Im. The average power is ½ Vm.Im. The 
resulting waveform is illustrated in Figure 3 below. 
  

 
Figure 3. Voltage, current, and power curves in a network in an ideal purely resistive state 

 
2.2 Average power, apparent power, and reactive power 
 

Based on the above formulations, the following statements can be made. First, the 

power in a network with a purely inductive element is given by   p=-   ½ 𝑉𝑉𝑉𝑉sin(2𝑉𝑉). 

Second, the power in a network with a purely capacitive element is   p=½ 𝑉𝑉𝑉𝑉sin(2𝑉𝑉). 

Third, the power in a network with a purely resistive element is p=½ 𝑉𝑉𝑉𝑉s(1- cos2𝑉𝑉). 
Among the three power components, it can be observed that the sinusoidal waveform 

appears in the power components of inductive and capacitive elements, whereas the power 
component of a resistive element does not exhibit a sinusoidal form. Therefore, the analysis 
can be focused on the power components of either inductive or capacitive elements. 

Thus, in a general passive network under sinusoidal voltage conditions, by applying the 
identity sin a.cos a=½ [cos (a-b)–cos (a+b))], and cos -a=cos a, p=½ VmIm [cos𝜃–cos 
(2wt+𝜃)]. The instantaneous power 𝑝 consists of a sinusoidal term, – ½ VmIm cos (2wt+𝜃) 
which has an average value of zero, and a constant term ½ VmIm cos 𝜃. Therefore, the 
average power is given by P=½ VmIm cos 𝜃=VI cos 𝜃, where V=Vm/√2 and  I=Im/√2 are the 
root mean square (RMS) values of the phasor voltage and current, respectively. This can be 
expressed in the following equation 
 

P=VI cos 𝜃     (Eq. 1)

  
The term cos 𝜃 is known as the power factor (pf). The angle 𝜃 represents the phase 

angle between voltage (V) and current (I); its value always lies between ±90°. Therefore, 
cos 𝜃, and consequently the real power P, is always positive. However, to indicate the sign 
of 𝜃, an inductive circuit—where the current lags behind the voltage—has a lagging power 
factor, whereas a capacitive circuit—where the current leads the voltage—has a leading 
power factor. The average power P can also be determined using the relationship 
P=(1/T)∫pdt. The unit of power is watt (W), and kilowatt (kW) equals 1000 W. 
 
2.2.1 Optimum active power 

 
From the average power value, we have P=½ VmIm cos 𝜃=VI cos 𝜃, where V=Vm/v2 

and I=Im/v2 are the root mean square (RMS) values of the phasors V and I respectively. The 
term cos 𝜃 is referred to as the power factor, abbreviated as pf. The angle 𝜃 is the phase angle 

between V and I, which always lies between ±90o. Therefore, cos 𝜃 and consequently P is 
always positive. The corresponding curve can be seen in Figure 4 below.  
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active power 

 

corner 𝜃 

Fig. 4. Optimum active power curve with power factor angle 𝜃 

 
2.3 Power diagram, rotor shear angle (𝜹), and synchronization power 
 

The ratio of synchronous reactance (Xs) to resistance (R) in an alternator is relatively 
insignificant, such that neglecting R introduces minimal error in specific calculations. 
Therefore, by ignoring R, it is possible to construct a diagram illustrating the relationship 
between the power delivered by the alternator and the phase angle between the terminal 
voltage V and the internal generated voltage E. Consequently, it can be deduced that the 
power delivered is directly proportional to Esin𝛿\sin\deltaEsinδ, and the graph of power 
versus rotor displacement angle of the alternator forms a sinusoidal waveform, as 
illustrated in Figure 5. 
 

 
Fig. 5. The relationship between the power and the angle of the generator rotor 

 
Figure 5 can be explained as follows. The length of  VE2=I2X, and the length of  VP2=VE2 

cos∅2=IXs cos∅2, also VP2=E2 sin𝛿2. Thus, these relationships are applicable for all values 

of δ and E. Accordingly, E sin𝛿=IXs cos∅, or I.cos∅=
𝑆𝑖𝑛δ

𝑋𝑠
. As previously explained, the power 

P=VI cos𝜃 or a single-phase system. Here, for this three-phase alternator, P=3 VI cos∅ where 
∅ is the power factor of the generator or the three-phase alternator machine. By substituting 

the equation I.cos∅=
𝑆𝑖𝑛δ

𝑋𝑠
 into the equation P=3 VI cos∅, we obtain P=3. V. 

𝑆𝑖𝑛δ

𝑋𝑠
 and the phasa-

phasa value of the voltage V and the voltage source E are entered 1/√3, So that the equation 
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takes the following form, which indicates synchronism when the angle 𝛿 equals the angle ∅. 
equation (2) can be applied for all values of rotor displacement angle 𝛿 and voltage source 
E. 
 

P=

𝐴
𝑉.𝐸 𝑆𝑖𝑛δ

𝑋𝑠      (Eq. 2) 

 
2.4 Stability limits 
 

The stability of a system with interconnected dynamic components refers to the 
system's ability to return to normal or stable operation after experiencing a disturbance. If 
the rotor of a synchronous generator exceeds a certain critical angle, the magnetic coupling 
between the rotor (and the turbine) and the stator weakens or fails. The rotor then loses 
synchronism with the rotating magnetic field of the stator current and begins to rotate 
relative to that field, resulting in pole slipping. Figure 6 below illustrates a vector diagram 
showing the synchronous condition between the motor voltage source E and the generator 
voltage E, corresponding to a phase angle difference ∅ between the terminal voltage V and 
the current I. 

 
Fig. 6. The relationship between the δ power angle and the ∅ power factor angle for the motor 

voltage Em and the generator voltage Eg 

 
The point at which the angle 𝛿 equals the angle ∅ is referred to as the static or steady-

state stability limit. In Figure 6, this condition is illustrated by triangle obca, which 
represents the angle 𝛿, and triangle odao, which represents the angle ∅, also known as the 
power factor angle or the phase difference between the terminal voltage V and the current 
I. When the magnitude of angle 𝛿 equals that of angle ∅, an angle 𝛼 is formed by the straight 
line dbac (see Figure 6). 
 
2.4.1 Example of using the equal area criterion to indicate the critical angle δc. 
 

A generator is connected to an infinite busbar and transfers 25 MW of power at 
synchronous speed. The system reactance is such that the maximum transferable power is 
40 MW. Determine the critical angle and the maximum permissible sudden increase in 
generator output that can be obtained without exceeding the stability limit. 

 
Solution.  
Given: 
Pmaximum=40 MW PL1=25 MW 

 
The critical angle (𝛿c) and the maximum permissible sudden increase in generator 

output (PL2) that can be obtained without exceeding the stability limit. 
 
Answer:  
PL1 = Pmaximum sin 𝜹1 
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sin 𝛿1  = 

𝑎
25

40 

sin 𝛿1  = 0.625 

Or  𝛿1 = shift sin-1(0.625)=Reverse sine (0.625)=38.7
o 

𝛿1   = 

𝑎
(38,7) (𝜋)

180  Radians 

𝛿1   = 

𝑎
(38,7) (3,14)

180  Radians 

𝛿1   = 0.6754 Radians 
 
Pmax is determined for different load angle values, ranging from 0° to 90° (specifically 

using selected angles: 15°, 30°, 45°, 60°, 75°, and 90°). Based on these varying angles, the 
power-angle curve can be illustrated as shown in table 1 and figure 7. 
 
Table 1. Power angle curve 

𝛿 Sin 𝛿 P = Pmax sin𝛿 

15
o
 0.2560 10.24 

30
 o

 0.50 20 

38.7
 o

 0.625 25 

45
 o  0.707 28.28 

60
 o

 0.866 34.64 

75
 o

 0.966 38.64 

90
 o

 1.0 40 

 
The power is obtained using the equation P=40 sin δ. For example, when the angle 

δ=90°, then P=40×sin(90°)=40×1=40 MW, and so on for other angles such as 15°, 30°, 38°, 
45°, 60°, and 75°. The maximum power (P<sub>L max</sub>) is 40 MW. 
 

 

Fig. 7. Generator power output curve and critical power angle 

 
The operating point on the curve is indicated by point a. Subsequently, the load 

suddenly increases to PL2, causing the rotor to accelerate and oscillate, which is 
represented by point c on the curve. The maximum rotor swing can reach point d, allowing 
the generator output to be maintained without compromising system stability (PL2). To 
ensure the system remains stable, the area A1 must be equal to the area A2. 

To solve this problem graphically, point c must be positioned such that the curve areas 
satisfy A2=A1, resulting in a mathematical determination of the point through integration 
to calculate the areas. Let the load corresponding to point c be PL2 and the corresponding 
load angle be 𝛿c, implying that PL2 = 40 sin 𝛿c (see Equation 3). Subsequently, integration 
is performed to calculate the areas A1 and A2. 

 
𝐴1 = 𝐽0,6754

δ (𝑃𝐿2 − 40 sin δ) 𝑑δ 

𝐴2 = ∫ (40 sin δ − 𝑃𝐿2) 𝑑δ
𝜋−δc

δc

 

 
(Eq. 3) 
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Since A1=A2, then 
 

𝐽0,6754
δ (𝑃𝐿2 − 40 sin δ) 𝑑δ = ∫ (40 sin δ − 𝑃𝐿2) 𝑑δ

𝜋−δc

δc

 

 
(Eq. 4) 

 
This integration can be described in the form of individual integrations as follows. 
 

𝐽0,6754
δ (𝑃𝐿2)𝑑δ − 40 𝐽0,6754

δ (𝑆𝑖𝑛 δ) = 40 ∫ (sin δ) 𝑑δ −
𝜋−δc

δc

∫ (𝑃𝐿2)𝑑δ
𝜋−δc

δc

 

 
(Eq. 5) 

𝐿2𝐽
0,6754
δ (𝑃𝐿2)𝑑δ − 40 𝐽

0,6754
δ  𝑑(−𝑐𝑜𝑠δ) = 40𝐽

δc
𝑛−δc … ) − 𝑃𝐿2 ∫ …

𝜋−δc

δc

 

 
(Eq. 6) 

 
𝑃𝐿2 (δ) |  δc

0,6754
 |  δc +40 (Cosδ)

0,6754
 |  π – δc=40 (−Cosδ)

δc
 |  π – δc 

δc
| − 𝑃𝐿2 (δ)   

 
(Eq. 7) 

 
𝑃𝐿2(δc − 0,6754) + 40(cos δc − 0,6754) = 40{− cos(π –  δc) − (− cos δc)} − 𝑃𝐿2{(π –  δc) − (δc)} 

 
(Eq. 8) 

 
As above that PL2=40 sin δc  
 

40 sin δc (δc − 0,6754) + 40(cos δc − 0,6754) = 40{− cos(π –  δc)} − 40 sinδc {(π –  δc) − (δc)}   
 

40 sin δc (δc − 0,6754) + 40 sin δc {(π –  δc) − (δc)}
= 40 {cos (π –  δc) − (−𝑐𝑜𝑠δc)} − 40(𝑐𝑜𝑠δc − 0,6754) 

 
𝑆𝑖𝑛δc (δc − 0,6754 + π –  2δc) =  {−cos (π –  δc) + cos δc} − {cosδc − (0,6754)} 

𝑆𝑖𝑛δc (−0,6754) + π –  δc) = cos δc + 0,6754  
(π –  δc − 0,6754) sin δc = cos δc + 0,6754 

 
(Eq. 9) 

 
To generate the plot (graph), arbitrary values can be taken for the left-hand side and 

right-hand side expressions above, with 𝛿c assumed to lie between 40° and 80°. 
 
Table 2. Solution (π – δc – 0.6754) sin δc = cos δc + 0.6754 

𝜹c 𝜹c in radians 

(= 
(𝛅𝐜).(𝟑,𝟏𝟒)

𝟏𝟖𝟎
) 

(𝝅 – 𝜹c – 

0,6754) 

sin 𝜹c (𝝅 – 𝜹c – 

0,6754) sin 𝜹c 
(Kiri) 

cos 𝜹c cos 𝜹c + 

0,6754 
(Kanan) 

40 0.6981 1.7681 0.6428 1.135 0.7660 1.4414 
50 0.8727 1.5937 0.7660 1.223 0.6428 1.3182 
60 1.0427 1.419 0.866 1.225 0.50 1.1754 
70 12217 1.2445 0.9397 1.168 0.342 1.0174 
80 1.3963 1.0699 0.9848 1.05 0.1736 0.849 
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Fig. 8. Curve showing the critical angle δc 

 
By observing the curve in figure 8, the intersections of the left-hand side and right-hand 

side equations occur at two angles, namely 50° and 60°. Therefore, a detailed breakdown of 
the critical angle 𝛿c within the range of 50° to 60° is made to further examine the precise 
intersection of the critical angle 𝛿c. See Table 3 below. 
 
Table 3. Details of the magnitude of the critical angle δc in the range of 500 to 600 

𝜹c 𝜹c in radians 

(= 
(𝛅𝐜).(𝟑,𝟏𝟒)

𝟏𝟖𝟎
) 

(𝝅 – 𝜹c – 

0,6754) 

sin 𝜹c (𝝅 – 𝜹c – 

0,6754) sin 𝜹c 
(left) 

cos 𝜹c cos 𝜹c + 0,675 
(right) 

50 0.8722 1.5924 0.7660 1.2197 0.6427 1.3181 

51 0.8896 1.575 0.7771 1.2239 0.6293 1.3047 

52 0.9071 1.5575 0.7880 1.2273 0.6156 1.2910 

53 0.9245 1.5401 0.7986 1.2299 0.6018 1.2772 

54 0.942 1.5406 0.8090 1.2463 0.5877 1.2631 

55 0.9594 1.5052 0.8191 1.2329 0.5735 1.2489 

56 0.9768 1.4878 0.8290 1.2333 0.5591 1.2349 

57 0.9943 1.4703 0.8386 1.2329 0.5446 1.2200 

58 1.0117 1.4529 0.8480 1.2341 0.5299 1.2053 

59 1.0292 1.4354 0.8571 1.2302 0.5150 1.1904 

60 1.0427 1.419 0.866 1.225 0.50 1.1754 

 
Thus, to illustrate the magnitude of the angle, Table 4 is provided, presenting the 

calculations as follows. 
 
Table 4. Calculation to indicate the large angle 

𝜹c 𝜹c in 
radians 

(= 
(𝛅𝐜).(𝟑,𝟏𝟒)

𝟏𝟖𝟎
) 

(𝝅 – 𝜹c – 

0,6754) 

sin 𝜹c (𝝅 – 𝜹c – 

0,6754) sin 

𝜹c 
(left) 

cos 𝜹c cos 𝜹c + 

0,675 
(right) 

55.0 0.9594 1.5052 0.8191 1.2329 0.5735 1.2489 

55.1 0.9611 1.5035 0.8201 1.2316 0.5721 1.2475 

55.2 0.9629 1.5017 0.8211 1.2331 0.5707 1.2461 

55.3 0.9646 1.500 0.8221 1.2332 0.5692 1.2446 

55.4 0.9664 1.4982 0.8231 1.2318 0.5678 1.2432 

55.5 0.9681 1.4965 0.8241 1.2332 0.5664 1.2418 

55.6 0.9699 1.4947 0.8251 1.2332 0.5649 1.2403 

55.7 0.9716 1.493 0.8260 1.2332 0.5635 1.2389 
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55.8 0.9734 1.4912 0.8270 1.2333 0.5620 1.2374 

55.9 0.9751 1.4895 0.8280 1.2333 0.5606 1.2360 

56.0 0.9768 1.4878 0.8290 1.2333 0.5591 1.2349 

56.05 0.9777 1.4869 0.8295 1.2334 0.5584 1.2338 

56.1 0.9786 1.486 0.8300 1.2333 0.5577 1.2331 

56.2 0.9803 1.4843 0.8309 1.2334 0.5562 1.2331 

 
After further calculations, the critical angle was found to be at 56.10°. However, a more 

detailed mathematical refinement is required using Excel iteration within the critical angle 
interval between 55° and slightly above 56°. The following Table 5 presents the calculations 
performed using Excel iteration. 
 
Table 5. Calculations with excel iterations 

δc Π – δc -      0,6754 Sin δc Sin δc*(π–δc 

– 0,6754) 

cos δc cos δc + 

0,6754 

55 1.506197222 0.819152 1.2338 0.573576 1.249 

55.01 1.506022694 0.819252 1.2338 0.573433 1.2488 

55.02 1.505848167 0.819352 1.2338 0.57329 1.2487 

55.03 1.505673639 0.819452 1.2338 0.573147 1.2485 

55.04 1.505499111 0.819552 1.2338 0.573004 1.2484 

55.05 1.505324583 0.819652 1.2338 0.572861 1.2483 

55.06 1.505150056 0.819752 1.2339 0.572718 1.2481 

55.07 1.504975528 0.819852 1.2339 0.572575 1.248 

55.08 1.504801 0.819952 1.2339 0.572432 1.2478 

55.09 1.504626472 0.820052 1.2339 0.572289 1.2477 

55.1 1.504451944 0.820152 1.2339 0.572146 1.2475 

55.11 1.504277417 0.820252 1.2339 0.572003 1.2474 

55.12 1.504102889 0.820352 1.2339 0.57186 1.2473 

55.13 1.503928361 0.820451 1.2339 0.571716 1.2471 

55.14 1.503753833 0.820551 1.2339 0.571573 1.247 

55.15 1.503579306 0.820651 1.2339 0.57143 1.2468 

55.16 1.503404778 0.820751 1.2339 0.571287 1.2467 

55.17 1.50323025 0.82085 1.2339 0.571143 1.2465 

55.18 1.503055722 0.82095 1.2339 0.571 1.2464 

55.19 1.502881194 0.82105 1.2339 0.570857 1.2463 

55.2 1.502706667 0.821149 1.2339 0.570714 1.2461 

 
From table 5, the data indicate that the critical angle 𝛿<sub>c</sub> is indeed at 

56.030°, which satisfies the Excel iteration equation: Sin δc (π–δc–0.6754)=cos δc+0.6754, 
where the values of the left-hand side and right-hand side of the equation both equal 1.2342. 

 
4. Conclusions 
 

The selection of a critical angle in determining the appropriate amount of reactive 
power supply to achieve optimal active power without compromising system stability can 
be calculated based on the explanation provided above, and is summarized as follows. First, 
a power transfer of 25 MW occurs at synchronous speed. Second, the maximum transferable 
power is 40 MW. Third, the value of the critical angle 𝛿c without compromising system 
stability is 56.030°. Fourth, the generator output that can be obtained without exceeding 
the stability limit (PL2) is calculated as PL2=Pmaximum×sin𝛿c=40×sin 
56.030°=40×0.82933=33.1732 kW. 
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