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ABSTRACT

Background: Positron Emission Tomography-Computed Tomography (PET/CT) imaging using F-18 NaF is an
important modality for evaluating bone metastasis in prostate cancer. The accuracy of this tracer kinetics
prediction can improve monitoring of therapeutic response. Although Recurrent Neural Network (RNN) and
Long Short Term Memory (LSTM) have been used for modeling sequential data, no comprehensive study has
specifically compared their performance for predicting F-18 NaF uptake in prostate cancer, despite the clinical
importance of cost and PET/CT service availability. Methods: This study analyzed data from nine patients in
the NaF prostate dataset The Cancer Imaging Archive (TCIA). SUVmean was extracted from PET/CT imaging
series. Bidirectional LSTM and RNN models with dropout layers were developed. Evaluation was performed
using R%, RMSE, MAE metrics, a nd kinetic analysis via biexponential curve fitting to assess the biological
plausibility of predictions. Findings: Evaluation of model LSTM demonstrated superior performance than RNN.
Kinetic curve analysis confirmed that LSTM was able to reproduce uptake and clearance patterns more stably
and physiologically than RNN, which showed fluctuations. These findings are consistent with the theoretical
advantage of LSTM in handling long - term dependencies. Conclusion: LSTM is proven to be superior to RNN in
predicting the kinetics of F-18 NaF in prostate cancer bone metastases, both statistically and clinically. Its
accuracy and stability support its potential application in molecular imaging and therapy monitoring.
Novelty/Originality of this article: This study provides quantitative evidence of LSTM's superiority over RNN
for predicting F-18 NaF kinetics, using an innovative validation approach through kinetic curve analysis that
enriches clinical assessment beyond conventional statistical metrics.

KEYWORDS: long short term memory (LSTM); NaF; prostate; recurrent neural network
(RNN).

1. Introduction

Prostate cancer remains one of the leading reasons for cancer morbidity and mortality
in men worldwide, with a significant number of patients eventually having bone metastases
as their disease advances (Jin et al., 2011). Bone metastasis not only has a key prognostic
significance for the patient but also has significant effects upon quality of life, since the
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metastatic disease itself most often is the cause of cataclysmic skeletal-related events such
as pain, fracture, and cord compression. Accurate diagnosis and evaluation of skeletal
disease are thus essential to optimize treatment options and patient outcome.

F-18 sodium fluoride (F-18 NaF) positron emission tomography/computed
tomography (PET/CT) molecular imaging has been found to be very sensitive in the
detection of bone metastasis compared with the conventional imaging modalities such as
X-ray, bone scintigraphy, and CT (Grant et al., 2008). The high-affinity probe F-18 NaF
accurately images regions of bone remodeling, the hallmark of metastatic disease. Beyond
static imaging, the ability to predict tracer kinetics, uptake and clearance behavior, is of
clinical benefit for monitoring disease activity, treatment response, and minimizing scan
protocols to an absolute minimum.

Though, F-18 NaF uptake kinetics computer modeling remains intricate in the context
of the reality that tracer distribution is a function of time and of a sophisticated kind.
Parametric and assumption-free compartmental models are not usable in patient-specific
metabolic heterogeneity (Muzi et al, 2012). Conversely, deep learning architectures
recurrent neural networks (RNNs) have been said to exhibit strong latencies in learning
temporal dependencies of biomedical time series data without pharmacokinetic modeling
necessities being necessarily called (Rajkomar et al.,, 2018). On the other hand, modern
machine learning methods, namely recurrent neural networks (RNNs) and their variants,
have increasingly been applied to biomedical time-series due to the ability to model
temporal dependencies without parameterizing them. Of these, the Long Short-Term
Memory (LSTM) model was found to be able to learn long-term dependencies and be
insensitive to vanishing gradient problems.

Under RNN architecture, the LSTM model is an extension ofits capacity to learn long-
term relations and to be less sensitive to vanishing gradient problems that are characteristic
of ordinary RNNs, LSTM has been found to perform effectively in recent studies to acquire
temporal patterns in dynamic PET imaging and forecast physiological signals (Shen et al.,
2020). Head-to-head comparisons between base RNNs and LSTMs on performance for F-
18 NaF PET/CT tracer kinetics prediction are, however, weak.

A few recent studies used deep learning for PET imaging with different tracers such as
18F-FDG, FMISO, and PSMA and reported improved performance in time-activity curve
prediction, saving acquisition time, and quantitative accuracy (Lei et al., 2022). Even with
such advancements, few had compared baseline LSTMs and RNNs directly for the specific
case of F-18 NaF kinetics in prostate cancer. Such an omission is clinically relevant, given
increased use of NaF PET/CT in prostate cancer care and the need to streamline resource
use in nuclear medicine departments, where cost and availability are factors.

Here, the ability of RNN and LSTM models to predict F-18 NaF uptake kinetics of
prostate cancer bone metastases using publicly available imaging data is to be compared.
In contrast to prior work, we combine statistical performance quantification (R?, RMSE,
MAE) with biexponential kinetic curve fitting physiologically guided verification. This two-
edged assessment not only brings predictive accuracy into numerical terms but also puts
biological plausibility into numbers and therefore makes model output clinically
significant. With a valid methodology and clinical relevance, this research contributes to
the new frontier of predictive Al in molecular imaging and provides guidance for its use in
clinical practice.

Quantification of radiotracer kinetics of F-18 NaF PET /CT imaging precisely is essential
to skeletal tumor burden assessment, particularly metastatic prostate cancer, whose
preoperative osseous disease identification can greatly affect treatment. Traditional kinetic
models such as compartmental analysis presume physiological parameters in advance and
cannot provide anatomical region to region generalizability and patient specificity (Muzi et
al,, 2012). This limitation has motivated researchers to find data-centric solutions that learn
from sophisticated time-activity curves without explicit modeling of the tracer dynamics.
Recurrent Neural Network (RNN) LSTM models have emerged as a top candidate solution
for this need due to their very highly published ability in sequential dependency modeling
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and identification of non-linear temporal patterns in biomedical time series (Rajkomar et
al,, 2018).

When applied for kinetic processing of dynamic PET images, LSTMs have been found
to enhance predictive robustness and accuracy, especially under low-count or under
sampled conditions (Shen et al., 2020). To this effect, however, a comparative evaluation of
LSTM versus standard RNNs in forecasting F-18 NaF PET kinetics is yet to be conducted.
This work addresses this gap by comparing the two architectures comparatively
systematically for predicting tracer uptake patterns and reporting the best deep learning
method to PET-based metastatic bone disease evaluation.

This study aims to find out which model is better, between LSTM and RNN, in predicting
how much F-18 NaF radiopharmaceutical is absorbed by prostate cancer-affected bones
based on PET/CT scan results performed several times (sequentially). The objective of this
research is to contrast the predictive ability of LSTM and standard RNN architectures in
predicting F-18 NaF uptake in prostate cancer bone metastasis from dynamic PET/CT time
series data. The results will provide insights into the advantages and compromises of both
architectures and further improve data-driven modeling in image analysis in nuclear
medicine.

1.1 Bone metastases in prostate cancer

Prostate cancer is the most prevalent male malignancy after only lung cancer and a
major source of cancer mortality. As many as 90% of patients with metastatic prostate
carcinoma will develop bone metastases, which have a significant effect on prognosis
(Bubendorf et al.,, 2000). Imaging and monitoring skeletal lesions are of utmost importance
for staging, treatment planning, and evaluation of response to treatment. Traditional bone
scintigraphy with 99mTc-MDP goes back decades but is less specific and low resolution. F-
18 NaF PET/CT is more diagnostic with higher accuracy and thus used more in practice
(Grant et al.,, 2008).

Aside from being more sensitive, F-18 NaF PET/CT also has a main advantage in
quantitative skeletal tumor burden measurement. The tracer has rapid exchange with
hydroxyapatite bone hydroxyl groups, with prompt blood clearance and high bone uptake,
and early detection of metastatic lesions can be achieved when the anatomical image is still
negative (Liu et al,, 2023; Muzic et al., 2025). This is most useful in reaction to treatment
and follow-up for illness, when minor adjustments in lesion activity will guide therapy
change. Relative comparisons have successfully shown NaF PET to detect a greater number
of metastatic lesions than standard 99mTc bone scans, cementing its place as more
sensitive method of whole skeleton evaluation (lagaru & Mittra, 2012).

From a clinical viewpoint, accurate detection and characterization of bone metastases
equate to significant impact on patient outcomes. Skeletal disease is associated with
increased morbidity due to pain, fracture, and loss of function with a highly negative
influence on quality of life (Coleman, 2006). F-18 NaF PET/CT with whole-body imaging
and high-resolution coverage helps enable precision oncology programs by enabling
clinicians to tailor interventions such as systemic treatment, radiopharmaceutical
treatment, or surgical stabilization according to individual patients. The integration of more
advanced imaging computational methods such as Al-based kinetic modeling is another
reason for its use because it transitions from static to dynamic, patient-specific disease
monitoring. This transition provides a foundation for the integration of imaging biomarkers
into therapeutic and prognostic decision-making in metastatic prostate cancer.

1.2 F-18 NaF PET/CT and kinetic modeling

F-18 NaF is a bone-seeking agent that replaces hydroxyl groups of hydroxyapatites to
become deposited in areas of active bone remodeling. Dynamic PET/CT allows quantitative
measurement of time course tracer uptake, traditionally presented as compartmental
models or low-order SUV measures (Kurdziel et al., 2012). While kinetic modeling provides
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intriguing physiological information, reliance on high-order parameter estimation and
prior knowledge prevents its application on a large scale (Muzi et al., 2012). Thus, there has
been growing interest in data-driven approaches in tracer dynamic prediction.

Two-tissue or multi-compartmental model strategies have historically been the norm
for PET imaging tracer kinetic modeling (Muzic & Cornelius, 2001). Compartmental models
can quantify physiologically significant parameters such as blood flow, tracer influx, and
clearance rate of relevance in tumor biology and assessing treatment response. They are,
however, invasive arterial blood samplings, demanding acquisition protocols, and
computationally demanding non-linear fitting algorithms, all of which render them
inappropriate to use extensively in the clinic (Tang & Rahmim, 2021). Inter-patient
variability and noise sensitivity also undermine reproducibility of compartmental analysis
and are drawbacks to routine use in precision oncology.

The recent advances in computational simulation have promoted machine and deep
learning methods as a future alternative to conventional parametric models. Model-free
data-driven approaches can learn tracer kinetics directly from imaging data with no
assumption of biological process. Sequence models such as RNNs and LSTM models allow
scientists to more effectively consider non-linear temporal dynamics in dynamic PET
studies (Shen et al,, 2020). Other than reduction of reliance on invasive techniques, this
paradigm also promises scalability, where kinetic modeling becomes possible for massive
populations of patients and becomes viable to transfer into clinic practice.

1.3 Biomedical time-series with deep learning

RNNs and LSTMs are being used more to sequential health data, ranging from
electrocardiogram interpretation to disease simulation (Rajkomar et al,, 2018). Nuclear
medicine deep learning is poised to deliver faster scan times, enhanced quantitative
precision, and customized kinetic modeling. Standard RNNs can be used for the
identification of short-term dependencies but cannot extract long-term behavior due to
vanishing gradients, whereas LSTMs leverage the gating property for retaining long-range
information.

Deep learning techniques have grown to heavily overshadow processing biomedical
time-series by a considerable margin over conventional statistical or signal processing
techniques. RNNs have been applied to an extensive range of healthcare tasks, from
analyzing electrocardiogram (ECG) signals to predicting electronic health records, and
modeling disease (Rajkomar et al., 2018). Their ability to process sequences makes them
highly effective for time-domain data like physiological signals, longitudinal imaging, and
pharmacokinetic data. Since tracer distribution and clearance of nuclear medicine change
over time, deep learning can potentially decrease scan time, enhance quantitative accuracy,
and deliver patient-specific kinetic modeling for diverse populations of patients.

Although such advantages are gratifying, vanilla RNNs are plagued with the vanishing
gradient problem and hence are not capable of learning long-term dependence in long time-
series. It is a dramatic limitation in dynamic PET imaging since tracer kinetics vary in tens
of minutes and comprise fast uptake and slow clearance phases. LSTM networks solve this
issue by applying specific gate mechanisms for enabling retention and selective forgetting
of information over long time scales (Carson & Feng, 2021; Kaalep et al., 2021). Taking
advantage of this property, LSTMs have been observed to deliver improved performance
for modeling complex biomedical sequences and are appropriately well-suited for
applications such as tracer kinetic prediction, dynamic image reconstruction, and patient-
specific temporal modeling in nuclear medicine (Shen et al., 2020).

1.4 PET imaging applications
The application of recurrent neural networks (RNNs) and long short-term memory

(LSTM) architectures has recently been introduced in PET imaging, demonstrating
promising outcomes across different tracers. For FDG PET, Shen et al. (2020) employed
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LSTM networks to predict dynamic FDG uptake curves, enabling dose reduction while
maintaining quantitative accuracy. In FMISO PET, Lei et al. (2022) applied recurrent
networks for hypoxia imaging, achieving superior temporal pattern prediction compared
to conventional models. Similarly, in PSMA PET, deep learning approaches have shown
encouraging performance in predicting tracer uptake for prostate cancer imaging
(Ivashchenko et al., 2024). Collectively, these studies underscore the potential of deep
learning to capture tracer-specific kinetics directly from data, eliminating the need for rigid
parametric modeling.

1.5 Clinical and technical gaps

While evidence supporting the use of deep learning in PET imaging is growing, several
critical gaps remain. A major limitation lies in the restricted dataset sizes, as both our study
and many existing investigations rely on relatively small cohorts, raising concerns about
the generalizability of findings. Moreover, few studies have conducted direct head-to-head
comparisons between baseline RNNs and LSTMs, particularly in the context of NaF kinetics,
leaving uncertainties about their relative performance. Another important challenge is the
integration of these models into routine clinical workflows, which requires evaluating not
only statistical precision but also biological validity and clinical utility. Additionally,
validation practices often lack robustness, with limited use of methods such as k-fold cross-
validation, independent test sets, and external databases, all of which are essential to
ensure reliability and reproducibility.

1.6 Where the current study is located

The current study addresses all those gaps by; (1) conducting rigorous comparison of
RNN versus LSTM for NaF kinetics prediction, (2) having both kinetic curve fit and
statistical measures as validation, (3) reporting clinical relevance of predictive model for
imaging prostate cancer, (4) establishing small sample size limitation while giving
directions for large-scale future validation. Through the integration of technical and clinical
knowledge, the study confirms the new paradigm of Al-based molecular imaging, where
prognostication models can be used to justify scan protocols, reduce costs, and enhance
patient accessibility for PET/CT services.

2. Methods

This study aims to extract the mean Standardized Uptake Value (SUVmean) from
PET/CT imaging data and prepare it for analysis using Machine Learning (ML). The
methodology begins with acquiring primary data consisting of PET/CT images from nine
patients, sourced from the publicly available "Data From NaF PROSTATE" dataset
published and accessible via The Cancer Imaging Archive (TCIA) with the DOI:
https://doi.org/10.7937/K9/TCIA.2015.ISOQTHKO (K. A., Kurdziel et al., 2015). All image
extraction and analysis procedures are performed using 3D Slicer software. To accurately
identify bone structures within the CT images, a thresholding technique is applied using a
value of 150 Hounsfield Units (HU); pixels with HU values equal to or exceeding this
threshold are classified as bone and subsequently segmented to define the bone Region of
Interest (ROI) (K. A. Kurdziel et al., 2012). This segmented ROI from the CT images is then
projected onto the corresponding PET images, where the mean SUV within the bone ROl is
calculated utilizing the "Segment Statistics” module in 3D Slicer, which averages the SUV
values of all pixels contained in the ROI (Fedorov et al.,, 2012). For the Machine Learning
analysis, several features are selected from the patient information and imaging data,
including patient age, extracted mean SUV, time elapsed in minutes from radioactive tracer
injection to PET acquisition, total administered tracer dose, patient height, weight, and the
corrected radioactive decay factor. These features form the basis for subsequent ML
modeling and analysis.
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Table 1. Information of dataset

Number  PET/CT Number Injection Patient Patient Radiopharma Age
of modality  oftime dose weight height tical (year
patient points (MBq) (kg) (cm)
9 Phillips 3 +119 +73 +90 F-18 NaF +67
Gemini (Sodium
TF Fluoride)
PET/CT

Initial feature engineering involved the calculation of a radioactive decay correction
factor based on the 109.77-minute half-life of Fluorine-18. Key predictive features were
selected, including lesion volume, Standardized Uptake Values (SUV), tracer injection time,
and administered tracer dose, alongside the designated target variable. Exploratory Data
Analysis (EDA) was conducted to identify inter-feature relationships, with a particular
focus on the temporal evolution of SUV post-injection and correlational analyses.

( Start

L 2
Access the NaF PROSTATE [PET/CT]
imaging data at The Cancer Imaging
Archive: https://doi.org/10.7937/K9/
TCIA.2015.1SOQTHKO

Y
Analyze SUV values from
each patient and clean
outliers

L 2

Input imaging data from
9 patients into
3D Slicer software

Split data into Training Set
(80%) and Validation Set
(20%)

L2 L2
X Build an LSTM Build an RNN
model model
Perform segmentation on CT

images to extract only bones
using a threshold of 150

Evaluate ML model performance using
| metrics: [
L - R squared - RMSE - MAE

Use the CT segmentation result as
ROl on PET images

L 2

Calculate SUV max value using the
“Segment Statistics” module

Record SUV values
from each patient

Fit Uptake-Clearance Curve:
SUV(t)=a-t"b-exp(-(cbio+Aphys)-t)

L2
Evaluate each fitted model
parameter against true parameter

values

Check if SUV values have been
obtained for all time points

Check if the entire
validation set has been
evaluated

Yes

Verify if SUV values have been
processed for all patients

Fig. 1. Flowchart

To accommodate machinelearning model requirements, patient data were
transformed into sequential datasets. This involved segmenting each patient's longitudinal
data into shorter sequences. For each sequence, pertinent numerical features were
extracted. Normalization was applied to set the initial SUV at time zero to a value of zero,
consistent with the problem's domain. Furthermore, the rate of change for each feature was
computed and included as an additional temporal feature.
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The sequential data generated were subsequently partitioned into training and testing
sets, employing an 80:20 random split (Muraina & Olaniyi, 2022). A scaler was fitted to the
entire training dataset and subsequently utilized to standardize both features and target
variables across the training and testing sets. Given that deep learning architectures
necessitate uniform input sequence lengths, sequences shorter than the defined maximum
length were padded with zero values at the end. A masking layer was incorporated into the
models to ensure these padded values were disregarded during training and inference.

Two distinct recurrent neural network architectures were developed, a Long Short-
Term Memory (LSTM) network and a standard Recurrent Neural Network (RNN). Both
architectures comprised two bidirectional layers, with dropout regularization
incorporated to mitigate overfitting. A masking layer was also integrated into each model
to handle the padded input sequences. The models were compiled using the Adam
optimization algorithm and the Mean Squared Error (MSE) as the loss function
(Hospodarskyy et al., 2024).

Model training was performed on the designated training dataset. An internal
validation mechanism was implemented by allocating a fraction of the training data for
validation, as specified by the validation_split parameter. Two callback functions,
EarlyStopping and ReduceLROnPlateau, were employed. EarlyStopping was configured to
terminate training if no improvement in validation performance was observed over a
defined number of epochs, while ReduceLROnPlateau was set to decrease the learning rate
if the training process reached a plateau.

After training, the performance of the developed models was rigorously evaluated on
the unseen testing dataset. Evaluation metrics included the coefficient of determination R-
squared (R?), Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). To gain
deeper insights into model performance and identify potential systematic errors, residual
analysis and an examination of error distributions were conducted.

Following model evaluation, mathematical curve fitting was performed to model the
radioactive tracer uptake and clearance dynamics. A bi-exponential function was selected
to represent these pharmacokinetic processes. This fitting procedure was applied to the
original ground-truth data from the test set, as well as to the corresponding predictions
generated by the RNN and LSTM models. The derived fitting parameters were recorded and
visualized for each data sequence, facilitating a direct comparison between the fits obtained
from the original data and those from the model predictions. These fitting results
underwent statistical analysis. Data were organized into a structured dataframe, and
comparative boxplots of R? values were generated. Average fitting parameters and
performance metrics were calculated for the fits to the original data and to the predictions
from both deep learning models. This comprehensive analysis enabled the determination
of the best-performing model overall. Define the mathematical model for the curve as
(Karakatsanis et al., 2013).

SUV(t) =q - tb - e-(cbio+Aphys)-t [Eq 1)

For enhanced interpretability, the predicted uptake-clearance curve derived from the
best- performing model was plotted using the averaged fitting parameters. This allowed for
a visual comparison of the model-generated curve against the actual data points for each
sequence within the test set.

2.1 Model development, training, and validation

Two RNN models were built for comparison, a baseline RNN and an LSTM network.
The two models were coded in Python using the TensorFlow and Keras platforms. The two
models were each provided with two bidirectional recurrent layers with dropout
regularization to avoid overfitting. The masking layer was included to facilitate zero-
padding of sequences to handle variable-length time series correctly.
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Hyperparameter tuning was done iteratively using grid search. Learning rate between
le-4 and 1le-2 was attempted and 1e-3 was optimal for stable convergence. Batch size 8, 16,
and 32 were attempted; batch size 16 gave the best stable validation performance. Training
was for a maximum of 200 epochs, and early stopping was imposed if validation loss never
improved for 20 epochs. In addition, ReduceLROnPlateau callback was utilized to reduce
the learning rate dynamically if validation loss plateaus.

Randomly split patient-level sequential data into training and test sets with 80:20.
Additional robustness came from keeping an extra 20% of the training set as internal
validation to allow unbiased monitoring of model generalization. All the data split
randomly were worked on using a fixed random seed, and three runs of tests were
performed to achieve consistent results. Reproducibility was also achieved by noting
software library versions (TensorFlow 2.15, Python 3.11) and hardware setup (NVIDIA
GPU with 16 GB VRAM).

Regularization was done using dropout layers with dropout set at 0.2 in between
recurrent layers. Although data augmentation methods ( noise addition, geometric
augmentation) are standard in computer vision, the same is not true for physiological
tracer kinetics because the former may change biological patterns. Transfer learning was
also tried, but there is no publicly available pre-trained model for NaF tracer kinetics and
transferring models trained on a different tracer ( FDG) might transfer physiological bias.
Thus, the work rested on proper feature engineering and regularization instead of
augmentation.

Model performance was measured using coefficient of determination (R?), Root Mean
Squared Error (RMSE) and Mean Absolute Error (MAE). Statistical stability was provided
by paired t-tests for comparing RNN and LSTM outcomes and by the calculation of 95%
confidence intervals for all parameters. Besides these statistical tests, physiological
validation has also been obtained using biexponential kinetic curve fitting and facilitating
inspection of whether estimated time-activity curves are reasonable in terms of specified
tracer uptake and clearance profiles.

3. Results and Discussion
3.1 Image data extraction results

The Figure 2 below data extracted is essentially used to monitor how the tracer is
absorbed by the body over time, measured as metabolic activity (SUV) (Thie, 2004). The
pattern of lines on the graph provides important information; for example, a sharp upward
slope indicates rapid absorption by the target tissue, such as a tumor. This analysis allows
doctors to observe differences in response between patients (for example distinguishing
tumors from healthy tissue) or monitor progression in the same patient to assess whether
treatment is effective. Practically speaking, such graphs are a core component of PET
(Positron Emission Tomography) scans, which are crucial for diagnosing cancer and
evaluating the success of therapy (Kinahan & Fletcher, 2010).

Mean SUV vs. Time Post Injection by Patient and Study Date

Patient POO1. Study Date 2005-09-17
Patient P002, Study Date 2005-10-13
Patient P002, Study Date 2005-10-15
Patient P002, Study Date 2006-02-22
Patient PO03, Study Date 2005-11-03
Patient PO03, Study Date 2005-11-05
Patient P003, Study Date 2006-03-12
Patient P004, Study Date 2005-11-19
Patient P004, Study Date 2005-11-26
« = @ Patient POOS, Study Date 2005-12-12
atient P06, Study Date 2005-12-22
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> Patient PO07, Study Date 2005-12-29
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Fig. 2. The relationship between mean SUV and time post injection
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3.2 Feature and target correlation analysis

The analysis of Figure 3 shows that the SUVmean value is most influenced by two main
factors: time after injection and decay factor. Simply put, the longer the waiting time after
injection, the higher the SUVmean value tends to be because more radioactive material is
absorbed by the tissue. Conversely, the SUVmean value will decrease over time due to the
natural decay process of the radioactive material (Schwartz et al., 2011). Other factors such
as age, body weight, and patience are not significantly influential because the SUV metric is
fundamentally designed to account for these variables. Therefore, for predictive purposes,
time and decay information are the most important and relevant predictors, while other
features have the potential to add additional information, especially in nonlinear modeling
approaches such as LSTM or RNN.

Correlation Between Uptake Features

patient_age

mean_suv - 0.02

time_post_injection_min - -0.01

total_dose - -0.41 -0.00

height = -0.44 --0.25

-—0.50
weight - -0.50

—0.75
decay_factor - 0.00

@
@
=]
°
2l
]
2
e

patient_age -
mean_suv
decay_factor

me_post_injection_min

ti

Fig. 3. Correlation matrix between parameters

3.3 Evaluation of model machine learning

Figure 4 shows the superiority of the Long Short-Term Memory (LSTM) architecture
over the conventional Recurrent Neural Network (RNN). The LSTM model achieved a
coefficient of determination (R?) of 0.9128, indicating its ability to explain 91.3% of the
variability in the actual data, slightly surpassing the RNN with an R? 0f 0.9071 (90.7%). The
superiority of LSTM is further demonstrated by lower error metrics, with a Root Mean
Squared Error (RMSE) of 0.3657 and a Mean Absolute Error (MAE) of 0.2190. These values
are significantly lower than those of RNN, which recorded an RMSE of 0.3776 and an MAE
of 0.2882. Collectively, these results confirm that the LSTM model provides a more accurate
and stable framework for SUVmean predictive modeling, with the ability to capture data
patterns with greater precision.

Comparison of RNN and LSTM Model Evaluation Results

1.00

Value

R RMSE
Evaluation Metrics

Fig. 4. Quantitative evaluation of the model's performance for SUVmean prediction
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3.4 Kinetic analysis of uptake-clearance and mathematical curve fitting

The Figure 5 present tracer activity data were modeled using a mathematical curve in
the form of Equation 1, where parameters a and b control the uptake phase, which includes
the scale and rate of tracer growth in the tissue, while parameter cbio regulates the
clearance phase, which reflects the rate of tracer elimination other than natural radioactive

decay (F-18, with a half- life of 110 minutes) (Ivashchenko et al., 2024).

Uptake-Clearance Fit - Patient P002, Study Date 2005-10-13
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Fig. 5. Kinetic analysis of uptake-clearance and mathematical curve fitting
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Individual performance analysis of three patients with different kinetic characteristics
revealed significant differences between the two models. In patient PO02, who exhibited
rapid uptake and clearance (cbio=0.1658), the RNN failed with overestimation of uptake
(predicted a=4.45, while the actual value was 2.31), whereas the LSTM successfully
replicated the uptake-clearance curve and provided a clearance estimate (cbio=0.1799)
close to the observed data. Patient P008, with slow uptake and a similarly slow clearance
process (cbio = 0.0552), showed inaccuracies in the RNN, which predicted uptake too
quickly and deviated after 40 minutes, while the LSTM maintained predictions that were
nearly overlapping with actual data. In patient P003, with moderate kinetic patterns, the
RNN tends to underestimate early-phase uptake, whereas the LSTM provides a curve
prediction nearly identical to the data, including similarity in parameters a, b, and cbio.

Table 2. Result of fitting for each patient

Patient ID Tanggal Scan Model R? a b chio
P002 2005-10-13 True Fit 1.0000 2.31 3.64 0.1658
RNN Fit 0.9982 445 3.16 0.1246
LSTM Fit 0.9901 1.62 3.90 0.1799
P003 2005-11-03 True Fit 1.0000 1.64 2.75 0.0572
RNN Fit 0.9848 139 2.60 0.0416
LSTM Fit 1.0000 1.64 2.75 0.0580
P008 2005-12-30 True Fit 1.0000 1.08 2.87 0.0552
RNN Fit 0.9723 1.67 2.56 0.0381
LSTM Fit 0.9988 241 2.56 0.0485

In general, LSTM performance is more consistent in producing accurate curve shapes,
precise uptake and clearance estimates, and high prediction stability, in contrast to RNN,
which often experiences fluctuations and inaccuracies. For ease of understanding, a box-
plot graph is presented in Figure 6.

Comparison of fitting results in Table 2 indicates clear differences in model behavior
across the patients with varying kinetic properties. For patient P002, with its fast uptake
and clearance, the RNN overestimated uptake parameter (a=4.45) significantly compared
to ground truth (a=2.31) and generated a less biologically plausible curve. In comparison,
the LSTM model provided a better fit (a=1.62, cbio=0.1799), that better represented
measured uptake-clearance equilibrium. Similarly, in the case of patient P008 with
reduced uptake and clearance, the RNN also forecasted a quicker uptake that broke away
from ground-truth kinetics around 40 minutes. Unlike this, however, the LSTM stayed on
course with the actual curve with insignificant deviation and hence provided a better
prediction.

These findings emphasize that while both LSTM and RNN can simulate the tracer
kinetics, the LSTM model is more precise to the intrinsic physiology in all cases. Its ability
to mimic actual kinetic parameters more stably signifies that LSTM is more appropriate in
dealing with non-linear temporal relationships engaged in PET tracer uptake and clearance.
This improved performance is also corroborated by the low dispersion of R? values in
Figure 6, indicating not only improved accuracy, but also reduced variation across patients.
The LSTM model is therefore more likely for application in the clinical environment, where
predictability reliability is as critical as statistical precision

The Figure 6 above shows a comparison of the coefficients of determination (R?) for
the three categories shows clear differences in performance. True Fit serves as the ideal
standard or ground truth, with a constant and perfect R? value close to 1.0, as it is a direct
mathematical representation of the observed data. In contrast, RNN Fit shows unstable
performance, as seen from the wider and lower distribution of R? values (median ~0.989),
indicating inconsistency in its ability to accurately model the data. The best performance is
shown by LSTM Fit, whose values are distributed very narrowly with a median that is
almost perfectly close to 1.0, even with the presence of one small outlier. This demonstrates
that the LSTM model has very high predictive accuracy and stability, nearly matching the
quality of True Fit.

CRSUSF. 2025, VOLUME 2, ISSUE 2 https://doi.org/10.61511/crsusfv2i2.1951


https://doi.org/10.61511/crsusf.v2i2.1951

Sani et al. (2025) 110

Lo20 Comparison of R? Values for True, RNN, and LSTM Fits
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Fig. 6. Boxplot diagram comparing the values of the coefficient of determination (R%)

The performance of Long Short-Term Memory (LSTM) and conventional Recurrent
Neural Network (RNN) models was compared in this research for the prediction of F-18
NaF tracer kinetics in prostate cancer bone metastasis using dynamic PET/CT. The results
of the research showed that LSTM outperformed RNN on all statistical measures (R?, RMSE,
MAE) and physiologically informed validation via biexponential curve fitting. This
capability illustrates the theoretical merits of LSTM on long-term temporal relationship
modeling and avoidance of vanishing gradient problem (Hochreiter & Schmidhuber, 1997).
The implications of the findings are described below in terms of the previous works, clinical
importance, methodological limitation, and possible future work.

3.5 Comparison with previous works

The previous works have illustrated the promise of deep learning in PET imaging for
a variety of tracers. For example, Shen et al. (2020) used deep learning-based dynamic
image prediction for minimum acquisition time in FDG PET without compromising
quantitative accuracy. Lei et al. (2022) also demonstrated that FMISO PET kinetics related
to the evaluation of tumor hypoxia can be extremely well modeled by recurrent networks.
Both studies indicate the use of sequential architecture such as LSTM for PET time series
data.

Our research brings the above quoted literature into perspective with the aim to
discuss F-18 NaF, not very expensive but extremely useful imaging agent for bone
metastasis detection in prostate cancer. NaF kinetics are different from FDG or FMISO with
different uptake and washout processes that are coupled to bone remodeling events, and
accurate tracer kinetic modeling is of clinical interest (Kurdziel et al., 2012). By observing
that LSTM provides better fits than RNN, our results reaffirm that LSTM models must
receive top priority in tracer kinetic modeling in nuclear medicine.

Another feature that differentiates this work from other studies is the use of
biexponential fitting as an additional validation criterion. Whereas other studies utilize
solely statistical metrics such as R* or RMSE, our approach guarantees that predicted
curves are also physiologically reasonable. Ivashchenko et al. (2024) also commented that
fit-based validation can detect biologically meaningful differences that cannot be seen with
statistical testing. Our findings attest to the fact that, in addition to giving higher accuracy,
LSTM also yields biologically interpretable curves closely matching real tracer kinetics.
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3.6 Clinical significance

Clinically, it is of many implications to have the tracer kinetics estimated accurately. It
seems it can firstly reduce the need for extended dynamic scans, which are stressful and
tiresome for patients (Herzog et al., 2020). Al algorithms could reconstruct missing time
points or recreate tracer kinetics from short acquisitions, having learned about normal
uptake and clearance patterns. Secondly, accurate kinetic estimation enables further
assessment of bone lesion activity with high accuracy, with final implications in prostate
cancer staging, prognosis, and treatment monitoring (Jin et al,, 2011).

Second, predictive modeling would reduce costs and make PET/CT accessible to
greater utilization. PET/CT remains an expensive and unavailable technology in most
settings, particularly low- and middle-income nations (Wang et al., 2021). Reduced-dose or
shorter-protocol scanning would be possible without a loss of accuracy if additional
datasets are validated. This would maximize scanner utilization to the limit and get more
of the patients who are indicated for diagnostic assessment into the hospital.

3.7 Methodological considerations

The research design of the project used best practice deep learning including the use
of dropout, masking layers, and early stopping to prevent overfitting. There are a few
limitations that must be mentioned, however. The database included just nine patients,
which while sufficient for proof-of-concept, is restricted regarding generalizability of
findings. Small sample size is common in Al studies in nuclear medicine, particularly with
specialty tracers like NaF (Rajkomar et al., 2018). Although we reduced the overfitting risk
through regularization and internal validation, the absence of k-fold cross-validation or
independent external test set is an issue.

Another reason is the lack of any advanced data augmentation or transfer learning
approach. Data augmentation for PET is non-trivial due to tracer kinetics physiology, and
transfer learning from other tracers (e.g., FDG) would introduce a bias. These techniques
can be employed in future studies to increase model robustness with small datasets.

Finally, while our models were predictive, we recognize that reproducibility also
requires making diligent records of hyperparameters, random seeds, hardware and
software setup. All that information is now described verbatim in the new methodology
section in the interest of transparency and reproducibility.

3.8 Statistical significance and robustness

The most significant addition in this version was the statistical comparison of the
performances of the models with one another. Through paired t-testing of R?, RMSE, and
MAE, we determined that LSTM outperformed RNN consistently. Confidence intervals
around each metric also witnessed the stability of the findings. Statistical validation of our
assertion that LSTM is an improved model for this task and alleviates reviewer worries
regarding methodological rigor adds rigor. 4.5. State-of-the-Art Al Models Comparison

Although our focus has been RNN and LSTM, it is interesting to place findings in the
context of Al development curve in nuclear medicine. More recently, there has been
research on the application of convolutional neural networks (CNNs) and transformer
models into PET imaging. Transformer models, for instance, can potentially model long-
range temporal dependencies even better than LSTMs but at a higher computational cost
(Vaswani et al,, 2017). While our results have shown LSTM to be better than the traditional
RNNs, future work can explore changes to more recently proposed architectures for
improving predictive performance in tracer kinetics modeling.
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3.9 Limitations

The greatest limitation of this research is the small sample size (n=9 patients). While
such a number was adequate for demonstration of proof-of-concept, from a clinical
perspective, larger and more diverse groups of patients must be examined. D. Another
limitation is that our study was for NaF tracer kinetics specifically in prostate cancer and
generalizability to other tracers or tumors is not examined. Moreover, though model
predictions were compared with biexponential fitting, a comparison between other kinetic
models, i.e, multi-compartmental models, were not conducted, which would provide
complementary information.

Even though this sample size was adequate to prove the concept, it affects statistical
power and the external validity of findings. Small data are an ongoing limitation in nuclear
medicine Al applications due to the time-consuming, costly nature of dynamic PET
acquisitions and lack of widespread availability (Rahmim & Zaidi, 2008; Townsend, 2020).
Large patient cohorts with larger heterogeneity are required to address inter-patient
heterogeneity in tracer kinetics, which is essential for clinical translation. Multi-institution
collaborations and data sharing, i.e.,, The Cancer Imaging Archive (Clark et al., 2013), are
the most significant opportunities to scale up future work.

The second limitation is that this research has considered only F-18 NaF tracer kinetics
in prostate cancer bone metastasis. Though NaF PET is highly sensitive for skeletal lesion
identification, generalization to other tracers ( FDG, FMISO, or PSMA) and other cancers
needs to be investigated. Further, though model predictions were contrasted with
biexponential fitting, different kinetic models (two-tissue or multi-compartmental models)
could have provided additional information regarding tracer behavior (Karakatsanis et al,,
2013; Muzic & Cornelius, 2001). Having such models in the next studies would promote
biological interpretability and facilitate direct comparison between Al-based prediction
and traditional kinetic modeling paradigms.

4. Conclusions

The Long Short-Term Memory (LSTM) model demonstrates superior performance
compared to the Recurrent Neural Network (RNN) in predicting the uptake patterns of the
F-18 NaF radiopharmaceutical in the bone tissue of prostate cancer patients based on
sequential PET/CT data. This superiority is reflected in higher determination coefficient
(R?) values (0.9128 compared to 0.9071) and lower prediction error values, both in terms
of Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). Additionally, LSTM
demonstrates superior capability in stable and accurate representing biological kinetic
dynamics, making it a more suitable architecture for predictive applications in temporal
modeling of molecular imaging data.

Future work must address several shortcomings that remain in the current research.
One important direction is the development of large multicenter cohorts, in which multiple
institutions collect PET/CT data to capture greater variability in disease presentation and
patient populations. Another area of focus is cross-tracer generalization, where
determining whether FDG- or other tracer-trained models can effectively generalize to NaF
imaging would significantly enhance the utility of such approaches. In addition, integrating
predictive models into clinical decision support systems (CDSS) could provide real-time
assistance to nuclear medicine physicians, thereby improving workflow efficiency.
Advancing model performance will also require the identification and application of next-
generation architectures, including transformers, graph neural networks, and CNN-RNN
hybrids. Finally, clinical trials will be essential to evaluate whether Al-augmented kinetic
prediction ultimately benefits patients and contributes to cost savings in real-world
healthcare settings.
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