Potential reduction of CO2 emissions which is the cause of greenhouse gasses during COVID-19

Authors

  • Yunita Ismail Environmental Engineering Study Program, Faculty of Engineering, President University, Jl. Ki Hajar Dewantara, Bekasi, West Java 17550, Indonesia
  • Arika Khusniyati Environmental Engineering Study Program, Faculty of Engineering, President University, Jl. Ki Hajar Dewantara, Bekasi, West Java 17550, Indonesia

DOI:

https://doi.org/10.61511/andmej.v2i1.2024.962

Keywords:

greenhouse gas emissions, COVID-19 lockdown, low-carbon development

Abstract

Background: Greenhouse Gas Carbon Emissions produced in the implementation of education in tertiary institutions can be said to be quite high. Activities during the COVID-19 pandemic carried out by countries in the world have had many unexpected positive impacts by reducing CO2  emissions by up to 70%. At the beginning of 2020, various countries in the world including Indonesia and Jakarta experienced the COVID-19 pandemic, which prompted the government to implement the Large-Scale Social Restrictions (PSBB) policy to suppress cases of the spread of COVID-19. The existence of the PSBB has an impact on various aspects of people's lives, including limitations on community activities and mobility using motorized vehicles. The purpose of this study was to determine the amount of CO2  emissions during the PSBB policy period. Methods: The method and results given are a calculation method taken from several journals, and websites that are methods and models of emission reduction using expert opinion methods. One of them is the method used by the Intergovernmental Panel on Climate Change (IPCC), which is the most up-to-date method today.  Findings: The decrease in CO2  emissions during lockdown is caused by changes in people's activities outside the home, fuel consumption, and people's mobility using motorized vehicles. The COVID-19 pandemic, especially the implementation of lockdown, can be used as a momentum in increasing efforts and strategies to reduce the amount of CO2  emissions from motorized vehicles, one of which is by implementing low-carbon development. Conclusion: As we know in 2019, there is a COVID-19 pandemic which is one of the factors for reducing carbon dioxide emissions. Novelty/Originality of this Study: This study provides a novel contribution by quantitatively assessing CO2 emission reductions during the COVID-19 lockdown, emphasizing the unique context of an unprecedented global event. It conducts a comprehensive literature review to integrate various CO2 calculation methods, particularly highlighting the sophisticated IPCC method, and offers a comparative analysis of emission reduction techniques.

References

Abbasi, S., & Erdebilli, B. (2023). Green Closed-Loop Supply Chain Networks’ Response to Various Carbon Policies during COVID-19. Sustainability (Switzerland), 15(4). https://doi.org/10.3390/su15043677

Adma, N. A. A., Ahmad, F., & Phelia, A. (2020). Evaluasi Daya Dukung Tiang Pancang Pada Pembangunan Jetty. Jurnal Teknik Sipil, 1(1), 7-14. https://doi.org/10.33365/sendi.v1i1.271

Agasalim, A. A. (2024). Empirical Findings on the Relationship of Energy Consumption, Gross Domestic Product Per Capita and Carbon Dioxide (CO2) Emissions. International Journal of Energy Economics and Policy, 14(4), 684-690. https://doi.org/10.32479/ijeep.14062

Arndt, E. M., Jansen, T. R., Bojko, J., Roos, J. J., Babasiz, M., Randau, T. M., Welle, K., Burger, C., & Kabir, K. (2023). COVID-19 measures as an opportunity to reduce the environmental footprint in orthopaedic and trauma surgery. Frontiers in Surgery, 10(April), 1–8. https://doi.org/10.3389/fsurg.2023.959639

Bosca, H. D., & Maulana, R. (2024, January 3). Mengapa Suhu Bumi Terus Meningkat. Koran Tempo. https://koran.tempo.co/read/lingkungan/486483/mengapa-suhu-bumi-terus-meningkat

Chang, L., Chen, K., Saydaliev, H. B., & Faridi, M. Z. (2022). Asymmetric impact of pandemics-related uncertainty on CO2 emissions: evidence from top-10 polluted countries. Stochastic Environmental Research and Risk Assessment, 36(12), 4103–4117. https://doi.org/10.1007/s00477-022-02248-5

Dharmowijoyo, D. B. E., & Tamin, O. Z. (2010). Pemilihan Metode Perhitungan Pengurangan Emisi Karbon Dioksida di Sektor Transportasi. Jurnal Transportasi, 10(3). 245–252. https://doi.org/10.26593/jtrans.v10i3.436.%25p

Environment Agency (DLH). (2019, December 23). Pemanasaan Global. Dinas Lingkungan Hidup Kota Tanjungpinang. https://aset.dlh.tanjungpinangkota.go.id/berita/artikel/19-pemanasan-global

Fachri, M. R., Sara, I. D., & Away, Y. (2015). Pemantauan Parameter Panel Surya Berbasis Arduino secara Real Time. Jurnal Rekayasa Elektrika, 11(4), 123. https://doi.org/10.17529/jre.v11i3.2356

Faradilla, A. R., Yulinawa, H., & Suswantoro, E. (2016, August). Pemanfaatan fly ash sebagai adsorben karbon monoksida dan karbon dioksida pada emisi kendaraan bermotor. In Prosiding Seminar Nasional Cendekiawan (pp. 2-1). https://doi.org/10.25105/semnas.v0i0.874

Fitri, A., Chen, H., Yao, L., Zheng, K. H., Rossi, F., & Yin, Y. (2021a, October). Evaluation of the Groundsill’s stability at downstream of “Citorek” Bridge in Cimadur River, Banten Province. In IOP Conference Series: Earth and Environmental Science (Vol. 880, No. 1, p. 012029). IOP Publishing. https://doi.org/10.1088/1755-1315/880/1/012029

Fitri, A., Maulud, K. N. A., Pratiwi, D., Phelia, A., Rossi, F., & Zuhairi, N. Z. (2020). Trend Of Water Quality Status In Kelantan River Downstream, Peninsular Malaysia. Jurnal Rekayasa Sipil, 16(3), 178-184. https://doi.org/10.25077/jrs.16.3.178-184.2020

Fitri, A., Maulud, K. N. A., Rossi, F., Dewantoro, F., Harsanto, P., & Zuhairi, N. Z. (2021b, February). Spatial and temporal distribution of dissolved oxygen and suspended sediment in Kelantan river basin. In the 4th International Conference on Sustainable Innovation 2020–Technology, Engineering and Agriculture (ICoSITEA 2020) (pp. 51-54). Atlantis Press. https://doi.org/10.2991/aer.k.210204.011

Fitri, A., Rossi, F., Suwarni, E., & Rosmalasari, T. D. (2021c). Pelatihan Pembuatan Video Pembelajaran Bagi Guru MA Matha’ul Anwar Lampung Pada Masa Pandemi COVID-19. Jurnal Pengabdian Kepada Masyarakat (JPKM) TABIKPUN, 2(3), 189-196. https://doi.org/10.23960/jpkmt.v2i3.50

Fitri, A., Yao, L., Pratiwi, D., Phelia, A., Susarman, Dewantoro, F., Safitri, D., & Maulud, K. N. A. (2021d, October). Effectiveness of a groundsill structure in reducing scouring problem at Cimadur River, Banten Province. In IOP Conference Series: Earth and Environmental Science (Vol. 880, No. 1, p. 012026). IOP Publishing. https://doi.org/10.1088/1755-1315/880/1/012026

Global Carbon Project. (2021). Global Carbon Budget 2021 CO2 emissions rebound towards pre-COVID levels. Global Carbon Project. https://www.globalcarbonproject.org/global/images/carbonbudget/Infographic_Emissions2021.pdf

Guevara, M., Petetin, H., Jorba, O., Denier Van Der Gon, H., Kuenen, J., Super, I., Granier, C., Doumbia, T., Ciais, P., Liu, Z., Lamboll, R. D., Schindlbacher, S., Matthews, B., & Pérez García-Pando, C. (2023). Towards near-real-time air pollutant and greenhouse gas emissions: lessons learned from multiple estimates during the COVID-19 pandemic. Atmospheric Chemistry and Physics, 23(14), 8081–8101. https://doi.org/10.5194/acp-23-8081-2023

Han, J., Yin, J., Wu, X., Wang, D., & Li, C. (2023). Environment and COVID-19 incidence: A critical review. Journal of Environmental Sciences (China), 124, 933–951. https://doi.org/10.1016/j.jes.2022.02.016

Hui, D. S., Azhar, E. I., Madani, T. A., Ntoumi, F., Kock, R., Dar, O., ... & Petersen, E. (2020). The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan, China. International journal of infectious diseases, 91, 264-266. https://doi.org/10.1016/j.ijid.2020.01.009

Isnaeni, M. (2001). Dampak Ekonomi dan Lingkungan Perencanaan Tata Ruang dan Sistem Transportasi Kota (Doctoral dissertation, Tesis tidak dipublikasikan. Bandung: Program Pascasarjana Institut Teknologi Bandung).

Jacobson, T. A., Kler, J. S., Hernke, M. T., Braun, R. K., Meyer, K. C., & Funk, W. E. (2019). Direct human health risks of increased atmospheric carbon dioxide. Nature Sustainability, 2(8), 691-701. https://doi.org/10.1038/s41893-019-0323-1

Julisman, A., Sara, I. D., & Siregar, R. H. (2017). Prototipe Pemanfaatan Panel Surya Sebagai Sumber Energi Pada Sistem Otomasi Stadion Bola. Jurnal Komputer, Informasi Teknologi, dan Elektro, 2(1). 35–42. https://jurnal.usk.ac.id/kitektro/article/view/6756

Kabir, M., Habiba, U. E., Khan, W., Shah, A., Rahim, S., Patricio, R., ... & Shafiq, M. (2023). Climate change due to increasing concentration of carbon dioxide and its impacts on the environment in the 21st century; a mini review. Journal of King Saud University-Science, 35(5), 102693. https://doi.org/10.1016/j.jksus.2023.102693

Kumar, A., Singh, P., Raizada, P., & Hussain, C. M. (2022). Impact of COVID-19 on greenhouse gases emissions: A critical review. Science of the Total Environment, 806, 150349. https://doi.org/10.1016/j.scitotenv.2021.150349

Kurniarahma, L., Laut, L. T., & Prasetyanto, P. K. (2020). Analisis Faktor-Faktor yang Mempengaruhi Emisi CO2 di Indonesia. DINAMIC: Directory Journal of Economic, 2(2), 368-385. https://doi.org/10.31002/dinamic.v2i2.1429

Lambert, P., Musto, G., Thiessen, M., Czaykowski, P., & Decker, K. (2023). Impact of Cancer-Related Virtual Visits on Travel Distance, Travel Time, and Carbon Dioxide (CO2) Emissions during the COVID-19 Pandemic in Manitoba, Canada. Current Oncology, 30(7), 5973–5983. https://doi.org/10.3390/curroncol30070446

Liang, M., Zhang, Y., Ma, Q., Yu, D., Chen, X., & Cohen, J. B. (2023). Dramatic decline of observed atmospheric CO2 and CH4 during the COVID-19 lockdown over the Yangtze River Delta of China. Journal of Environmental Sciences (China), 124, 712–722. https://doi.org/10.1016/j.jes.2021.09.034

Marino, C., Nucara, A., Panzera, M. F., & Pietrafesa, M. (2023). Effects of the SARS-CoV-2 Pandemic on CO2 Emissions in the Port Areas of the Strait of Messina. Sustainability (Switzerland), 15(12). https://doi.org/10.3390/su15129587

Meng, Y., & Noman, H. (2022). Predicting CO2Emission Footprint Using AI through Machine Learning. Atmosphere, 13(11), 1–15. https://doi.org/10.3390/atmos13111871

Myori, D. E., Mukhaiyar, R., & Fitri, E. (2019). Sistem Tracking Cahaya Matahari pada Photovoltaic. INVOTEK: Jurnal Inovasi Vokasional Dan Teknologi, 19(1), 9–16. https://doi.org/10.24036/invotek.v19i1.548

National Aeronautics and Space Administration. (2020). Climate facts for tannoy announcements. National Aeronautics and Space Administration. https://science.nasa.gov/climate-change/

Nugrahanto, I., Sungkono, S., & Khairuddin, M. (2021). Solar Cell Otomatis Dengan Pengaturan Dual Axis Tracking System Menggunakan Arduino Uno. Jurnal Teknik, 10(1), 11–16. http://dx.doi.org/10.31000/jt.v10i1.4004

Our World in Data. (2024). CO₂ emissions per capita vs. GDP per capita, 2022. Our World in Data. https://ourworldindata.org/grapher/co2-emissions-vs-gdp

Papacostas, C. S., & Prevedouros, P. D. (1993). Transportation engineering and planning. Prentice Hall, Englewood.

Papadogiannaki, S., Liora, N., Parliari, D., Cheristanidis, S., Poupkou, A., Sebos, I., ... & Melas, D. (2023). Evaluating the impact of COVID-19 on the carbon footprint of two research projects: A comparative analysis. Atmosphere, 14(9), 1365. https://doi.org/10.3390/atmos14091365

Peschel, G., Jung, E. M., Fisser, C., Putz, F. J., Wertheimer, T., Sinner, B., Lunz, D., Jung, F., & Müller, M. (2021). Interstitial lung opacities in patients with severe COVID-19 pneumonia by bedside high-resolution ultrasound in association to CO2 retention. Clinical Hemorheology and Microcirculation, 77(4), 355–365. https://doi.org/10.3233/CH-200925

Phelia, A., Pramita, G., Bertarina, Ashruri, & Misdalena, F. (2021a). Pemanfaatan Limbah Minyak Jelantah Menjadi Sabun Sebagai Upaya Pengendalian Limbah Domestik Masa Pandemi Covid-19. Jurnal Pengabdian Kepada Masyarakat Radisi, 1(3), 181-187. https://doi.org/10.55266/pkmradisi.v1i3.76

Phelia, A., Pramita, G., Susanto, T., Widodo, A., & Putra, R. A. M. (2021b). Peningkatan Pengetahuan Animasi Video Dan Robotik Dalam Penerapan Project Base Learning Di Sma It Baitul Jannah. Jurnal Cemerlang: Pengabdian Pada Masyarakat, 4(1), 98-108. https://doi.org/10.31540/jpm.v4i1.1412

Phelia, A., Pramita, G., Susanto, T., Widodo, A., & Tina, A. (2021c). Implementasi Project Base Learning Dengan Konsep Eco-Green Di Sma It Baitul Jannah Bandar Lampung. SELAPARANG: Jurnal Pengabdian Masyarakat Berkemajuan, 5(1), 670-675. https://doi.org/10.31764/jpmb.v5i1.4908

Phelia, A., & Sinia, R. O. (2021). Skenario pengembangan fasilitas sistem pengolahan sampah dengan pendekatan cost benefit analysis di Kelurahan Kedamaian Kota Bandar Lampung. Jurnal Serambi Engineering, 6(1). https://doi.org/10.32672/jse.v6i1.2611

Prayudyanto, M. N. (2009). Analisis Optimasi Strategi Manajemen Kebutuhan Transportasi (MKT) dalam Mengatasi Persoalan Transportasi Perkotaan (Kasus Kota Jakarta). Disertasi tidak dipublikasikan. Bandung: Program Pascasarjana Institut Teknologi Bandung.

Putra, A., Indra, A., & Afriyastuti, H. (2019). Prototipe sistem irigasi otomatis berbasis panel surya menggunakan metode PID dengan sistem monitoring IoT. Universitas Bengkulu.

Rahim, M. (2021). Implikasi Covid-19 terhadap bangunan dan lingkungan. Jurnal Sipil Sains, 11(1). https://doi.org/10.33387/sipilsains.v11i1.2640Sari, E. G., & Sofwan, M. (2021). Carbon Dioxide (CO2) Emissions Due to Motor Vehicle Movements in Pekanbaru City, Indonesia. Journal of Geoscience, Engineering, Environment, and Technology, 6(4), 234–242. https://doi.org/10.25299/jgeet.2021.6.4.7692

Rothan, H. A., & Byrareddy, S. N. (2020). The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of autoimmunity, 109, 102433. https://doi.org/10.1016/j.jaut.2020.102433

Safitri, L. A. (2022). Literature Review: Kebijakan Dan Teknologi Untuk Mereduksi Dampak Buruk Dari CO2 Pada Lingkungan. JOURNAL SCIENTIFIC OF MANDALIKA (JSM) e-ISSN 2745-5955| p-ISSN 2809-0543, 3(7), 715-722. https://doi.org/10.36312/10.36312/vol3iss7pp715-722

Safuan, A. P. (2014). Revitalisasi Instalasi Pengolahan Air Limbah Pada Beberapa Tempat Pembuangan Akhir Sampah di Provinsi Lampung. Fakultas Teknik, Universitas Lampung. http://digilib.unila.ac.id/2096/

Sethi, J. K., & Mittal, M. (2022). Monitoring the Impact of Air Quality on the COVID-19 Fatalities in Delhi, India: Using Machine Learning Techniques. Disaster Medicine and Public Health Preparedness, 16(2), 604–611. https://doi.org/10.1017/dmp.2020.372

Shi, S., Tao, X., Chen, X., Chen, H., Fitri, A., & Yang, X. (2021, October). Evaluation of urban water security based on the DPSIR model. In IOP conference series: Earth and environmental science (Vol. 880, No. 1, p. 012023). IOP Publishing. https://doi.org/10.1088/1755-1315/880/1/012023

Zhang, P., Zhao, X., Sun, L., Zuo, J., Wei, W., Liu, X., Peng, X., Shan, Y., Li, S., Ge, L., Feng, K., & Li, J. (2023). What can we learn from the 2008 financial crisis for global power decarbonization after COVID-19? Fundamental Research, xxxx. https://doi.org/10.1016/j.fmre.2023.02.017

Zhu, Y., Xie, J., Huang, F., & Cao, L. (2020). Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. Science of the Total Environment, 727(December 2019), 138704. https://doi.org/10.1016/j.scitotenv.2020.138704

Downloads

Published

2024-07-31

How to Cite

Ismail, Y., & Khusniyati, A. (2024). Potential reduction of CO2 emissions which is the cause of greenhouse gasses during COVID-19. ASEAN Natural Disaster Mitigation and Education Journal, 2(1), 45–67. https://doi.org/10.61511/andmej.v2i1.2024.962

Issue

Section

Articles

Citation Check