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ABSTRACT

Background: The dynamics of surface water resources and their influence on agriculture irrigation in Kano
State, Nigeria, 2015-2025, are displayed in this research. This study aims to examine the influence of surface
water availability changes on irrigation potential in semi-arid catchment. With looming uncertainty concerning
water scarcity, particularly in Northern Nigeria, spatial-temporal dynamics of the surface water are critical to
sustainable agriculture planning. Current studies have used satellite-based indices to monitor changes in water
bodies and emphasized that such changes must be associated with climatic factors and land use patterns for
irrigation development decision-making. Methods: Remote sensing data, including Normalized Difference
Water Index (NDWI) from Landsat and Sentinel data, and rainfall data from the CHIRPS dataset, were used for
the study. Spatiotemporal modeling methodology was used that included NDWI trend analysis, NDWI-rainfall
relation, overlay with cover of cultivated land, and zonal statistics at the Local Government Area (LGA) level.
Findings: Findings show that there is general surface wetness expansion in the southern and central regions of
Kano State owing to enhanced irrigation activities, heightened water holding capacity, and possible aquifer
recharge. Conclusion: The study concludes that water resource management in Kano must be specially crafted
to overcome localized climatic stress conditions and spatial hydrological imbalance to facilitate sustainable
irrigation under semi-arid conditions.Ground-truth verification is however absent, which limits the accuracy of
surface wetness estimates, and future incorporation of field-based hydrological observations is recommended.
The findings present actionable advice for policymakers on improving irrigation strategy formulation and
adaptive water management in semi-arid climates. Novelty/Originality of this article: This research integrates
satellite-based NDWI for the first time with rain anomaly and land use overlays to determine water body
dynamics and their agricultural implications at sub-regional scales.
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1. Introduction

Freshwater ecosystems are increasingly being subjected to undue stress worldwide
due to the cumulative effects of climate change, population growth, and intensified
pressures from agriculture, industry, and consumption demands with special intensity in
semi-arid climates such as Northern Nigeria and Kano State, whose water quality was
infringed by industrial contamination (Olagunju, 2015). Since Kano's agricultural economy
is largely based on surface and shallow water for cultivation, it is most vulnerable when not
just the water dries up but also becomes toxic, which causes soil erosion and reduced crop
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yields (Hao et al., 2019). Despite its millennia-old history of irrigated agriculture since the
Kano River Project of the 1970s only ~2 % of Nigeria's arable land is irrigated today, low
rates of adoption of advanced irrigation technology indicate structural weaknesses
jeopardizing food security and agro resilience and Surface water supplies need to be
tracked extensively and at high resolution to unlock which regions are suitable for the
expansion of irrigation and where current systems are breaking down (Zha et al., 2003).
Extensive observations of surface wetness and moisture processes at scale are being made
with the use of satellite-derived indices, including Normalized Difference Water Index
(NDWI) observations of Mediterranean and temperate agroecosystems through remote
sensing measurements. In Kano, changes in soil and vegetation wetness, and possibly a
smaller modification in open water, NDWI estimates of highest probability between -0.2 to
0 ranges are expected because of the index sensitivity to vegetation water content (Chima
et al,, 2009). Between 2015 and 2025, Kano NDWI trend maps in Figure 3 reveals spatial
variability of moisture processes within gain and loss regions. Correlation with CHIRPS
rainfall data shows strong positive values of r>0.5 across irrigated agriculture regions
dominated by rainfall dependency, as depicted in Figure 2. Over urban or degraded habitats,
negative or low correlations depict altered hydrological regimes brought about by land
cover transformation and possible over-exploitation of water for agricultural purposes
(Karar etal, 2021).

Since Kano State is increasingly depending on rainfall along with controlled irrigation
schemes, it would be essential to understand spatial and temporal patterning of surface
wetness to facilitate effective water management (Lépez-Bermeo et al., 2022). NDWI-based
observation not only identifies hydrologically stressed sites but also provides useful
information regarding irrigation planning, groundwater management, and sustainable
agriculture. This approach enables policy makers to adopt selective and adaptive
intervention in line with the semi-arid nature of the region (Muriga et al., 2023). Current
studies across sub-Saharan Africa have also pointed to the growing importance of remote
sensing for irrigation management amidst climate uncertainty. In the Niger Basin, for
example, spatial hydrology models in combination with NDWI have been used to assess
irrigation potential and drought adaptation options (Conlon et al., 2022). Similarly, in East
African drylands such as Kenya and Ethiopia, multi-sensor remote sensing techniques have
been employed to analyze seasonal wetness patterns and the success of small-scale
irrigation schemes. These observations confirm the advantages of combining satellite-based
water indices with land use and rainfall data for adaptive planning in water-scarce regions.
The present study builds on these advances by bringing to Kano State, one of the major
agricultural regions in northern Nigeria, such integrative approaches (De Fleury et al,,
2023).

Spatial and temporal monitoring of surface moisture has been of growing interest
against the background of increasing environmental change. Remote sensing imaging with
the help of tools such as NDWI has been used effectively in hydrological stress vulnerable
area mapping and moisture process mapping in the semi-arid regions of Sub-Saharan Africa
(Bichi et al.,, 2024). At the local Nigerian level, geospatial methods of rain-fed and irrigated
agriculture in Kura and Minjibir, Kano State, found that the use of irrigation raised
yieldsduring the 2019-2020 cropping seasons (Dahiru et al., 2022). The findings confirm
the applicability of satellite-based NDWI data in climate and land use information
integration in adaptive irrigation planning decisions in semi-arid ecosystems. This study
thus seeks to examine the patterns in the temporal trend of wetness and wet area derived
from NDWI over Kano, patterns of rainfall correlation with NDWI, and map spatial change
in NDWI over agricultural regions. The target is to inform sustainable irrigation planning
for semi-arid regions, specifically solving the challenges of water availability and
contamination.
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2. Methods
2.1 Study area

The Kano State is bounded by latitudes 10°30'N and 12°00'N, and longitudes 7°30’E
and 9°00'E in northwestern Nigeria and it is an important semi-arid zone with an average
yearly rainfall of around 800-1000 mm occurring predominantly during the period from
May to September (D’Agostino et al.,, 2025). The state falls in the Hadejia Jama ‘are River
Basin, which is among the richest irrigation zones of Northern Nigeria. Kano's topography
is typically rolling to flat, and the area possesses rainfed agriculture and irrigated
agriculture (Gao, 1996). Seasonal water availability makes the state more vulnerable to
hydrologic fluctuation and land cover change and therefore a good place to study surface
water dynamics as well as agricultural irrigation potential and the Local Government Areas
(LGAs) are administrative units employed at zonal-level estimation of water resources
(Kankara, 2019).
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2.2 Data sources and collection

In this study, 2015-2025 geospatial data and multi-source remote sensing were
utilized: Satellite data for NDWI: Surface water alteration was examined using cloud-free
median composites of Landsat 8 (2015) and Sentinel-2 (2025) in the Google Earth Engine
(GEE) environment. The sensors have a spatial resolution of 30 m (Landsat) and 10 m
(Sentinel-2), respectively. Rainfall Data: Monthly average rainfall data for the investigation
period (2015-2025) were downloaded from the Climate Hazards Group InfraRed
Precipitation with Station data (CHIRPS), a quasi-global at 0.05° (~5 km) resolution, that
has been appropriately validated for application over tropical and semi-arid regions
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(Kankara, 2019). Land Cover Classification: Cropland was mapped with ESA World Cover
10 m land cover dataset (version 2021) for the masking of cropland to become possible.
Administrative Boundaries: the geographic data of the Kano LGA were downloaded from
the FAO Global Administrative Unit Layers (GADM v3.6) that provides zonal statistical
aggregations.

Preprocessing and data fusion took place in the Google Earth Engine (GEE)
environment facilitating scalable cloud computing for multi-temporal Earth observation
data. NDWI was computed for Landsat 8 and Sentinel-2 images with the green and near-
infrared bands, and thresholding was applied to detect water and non-water surfaces (Du
et al,, 2016). CHIRPS rainfall anomalies were normalized further to long-term means to
determine interannual precipitation regime variability across the study area (Funk et al,,
2015). Cropland mask usage in ESA WorldCover data was employed to enhance surface
wetness detection and for accounting for adequately covered irrigation-relevant regions
(Zanaga et al,, 2021). Then spatial summaries were constructed up to Local Government
Area (LGA) level to represent hydrological heterogeneity as well as local correlation
patterns of NDWI-rainfall (Asoka et al., 2017).

Table 1. Summary of datasets used in the study

Data type Source Temporal Spatial Period of Key
resolution  resolution coverage parameters/bands
used
Satellite Landsat 8/9, Annual 10-30m 2015-2025 Green, NIR, SWIR
Imagery for Sentinel-2 composites (assumed) bands
NDWI
Gridded CHIRPS Annual 0.05°(~5 2015-2025 Rainfall (mm)
Rainfall Data (Climate aggregates km)
Hazards Group)
Kano State GADM (FAO N/A N/A N/A Geographic
Administrative Global boundaries of
Boundary Administrative) Kano State

2.3 NDWI computation and change detection

Normalized Difference Water Index (NDWI) is one of the most commonly used to be
applied in surface water body detection and tracking, the index takes advantage of the
difference that occurs between near-infrared (NIR) and green satellite image bands in
identifying water objects and the index best discriminates water from other land covers and
is thus reliable to estimate surface water area with temporal consistency (West et al., 2019).
Parallelly, the Normalized Difference Built-up Index (NDBI) tries to distinguish built-up
features from the different subtraction of SWIR and NIR bands. NDBI is applied to pattern
discrimination of urban development and built-up, and urban planning and management
(MacAlister & Subramanyam, 2018). Through its yearly report, researchers can monitor
trends in urban surface water and land and observe the impact of urbanization on
hydrological processes and allow them to examine inter-annual change and long-term
trends, a value of unimaginably gigantic dimension to the sustainable development and
resource management of the impacted zone. To estimate the surface water condition,
Normalized Difference Water Index (NDWI) was derived with formula as follows:

Normalized Difference Water Index (NDWI):
NDWI = Green-NIR
Green+NIR (Eq.1)

Where:
Green Band is Band 3 in Landsat 8 and Band B3 in Sentinel-2.
Near-Infrared (NIR) Band is Band 5 in Landsat 8 and Band B8 in Sentinel-2.
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The index is used to increase water body reflectance and decrease vegetation and soil
reflectance. Following preprocessing and cloud and shadow masking, NDWI for every year
was computed. NDWI change layer was computed by subtracting 2015 NDWI values from
2025:

NDWI Change= NDWI 2025-NDWI 2015 (Eq.2)

For better understanding, the following values were mapped into three classes:
Extreme Water Loss: NDWI change < -0.2 (red mapped)

No Change: NDWI between -0.2 and 0.2 (white)

Water Gain/Expansion: NDWI change > 0.2 (blue)

This blue-white-red diverging color scheme highlights locations of hydrological change.

2.4 Rainfall and NDWI correlation analysis

To analyze precipitation and surface water dynamics relationship, CHIRPS-derived
annual cumulative rainfall was estimated for every LGA. Annual mean NDWI values were
estimated over the same LGAs. Pearson correlation coefficients (r) of rainfall and NDWI time
series at the LGA level were next estimated to investigate surface wetness' time dependence
on rainfall. +1 values closer to represent high positive association with rainfall-ruled
hydrological regimes (Su et al, 2017).

This correlation analysis was further supplemented by the application of spatial
statistics to map heterogeneous rainfall-NDWI responses in rain-fed and irrigated
landscapes. Under tropical and semi-arid conditions, literature has concluded that
interaction between precipitation variability and vegetation or water indices is typically
nonlinear and reversible to land use intensity and groundwater pumping (Zhang et al,
2019). By correlating NDWI change with rain fall anomaly, the difference between rainfall-
controlled regimes of wetness and human-impacted regimes of wetness like those occurring
as a result of irrigation pumping and urbanization can be defined (Mladenova et al, 2017).
Such dual control of surface wetness dynamics is beneficial in charting climatic dependency
as well as human-impacted hydrological stress in Kano State.

2.5 Zonal statistical analysis by agricultural land and LGAs

To determine hydrological dynamics over agriculturally significant regions, NDWI
layers were masked by classifying the ESA World Cover Cropland within each LGA
boundary: Mean NDWI change, Maximum NDW!I value, and Maximum NDWI loss were
computed. This yielded spatial summation of surficial water variation in farming fields,
which diminished trend most suitable for irrigation planning. LGAs were given priority
since they are the foundation of regional farm planning and water management.

2.6 Accuracy assessment and limitations

Despite NDWI being widely used to detect surface water presence and wetness
variation, threshold values (< -0.2 and > 0.2) based on traditional classification ranges of
earlier regional studies and Google Earth imagery verification were applied in this study.
Ground-truth field verification was not performed due to data access limitations, which may
indicate doubt in classification of wet/dry zones. For correlation of rainfall-NDWI,
Pearson's correlation coefficient was derived from annual averages of CHIRPS rainfall and
mean NDWI values at the LGA level with the same temporal frequency. Although this
approach reveals broad-scale wetness-rainfall relations, the absence of direct in-situ
hydrologic data is still a limitation. Water field measurements and irrigation observations
should be integrated in future research to enhance model accuracy and validation (West et
al, 2019). Among the significant disadvantages of this study is satellite index dependency
on underlying atmospheric conditions, mixed-pixel impacts, and seasonal canopy cover.
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NDWI threshold values have been reported in other studies to vary with landscapes and
perhaps need to be regionally calibrated for accurate results (Du et al,, 2016; Acharya et al,,
2018). Field calibration deficit would lead to overestimation or underestimation of small
bodies of water, particularly in irrigated fields with canals, irrigation ponds, and ephemeral
wetlands. Furthermore, CHIRPS rainfall, despite being very well validated for the continent
as a whole, is a 0.05° gridded product that would not necessarily be fine enough to capture
micro-scale rain variability over the Kano State. This spatial mis-match between the rainfall
inputs and NDWI (30 m) is an additional source of uncertainty in rainfall-wetness
correlation analysis (Funk et al., 2015). The imposition of such spatial variability indicates
the need for the incorporation of higher-resolution climate products and Unmanned Aerial
Vehicle (UAV) images within future water resource research.

The second primary limitation is the temporal frequency used to obtain the NDWI,
which was achieved from annual means. While such smoothing was inevitable in trying to
dampen seasonally noisy data, it also automatically dampens short-term hydrological
fluctuation like flash flooding or dryness. Analysis of high-frequency time-series data
(monthly or season NDWI) has been experimentally demonstrated to yield more accurate
notions regarding agricultural water supplies and irrigation timing (Ji et al, 2009; Gao,
1996). In addition, the lack of availability of in-situ measurements of hydrologic parameters
such as river discharge, groundwater, and irrigation water abstraction limits validation of
satellite-based indicators. Despite such limitation, the approach followed here provides a
realistic standard for policy-supported observation and analysis of large-area water
resource processes. Further studies need to address the integration of hybrid approaches
that merge remote sensing with participatory field surveys, weather stations, and field
hydrology for the sake of enhanced accuracy and socio-ecological relevance to Northern
Nigerian water monitoring networks.

2.7 Visualization, mapping, and export

Geospatial computation and primary mapping were conducted on Google Earth Engine
for NDWI computation, masking, and correlation modeling. Maps were styled using
scientifically suited color ramps (RdBu for change detection; sequential Blues for rain
intensity). Final visualizations were enriched and annotated with ArcGIS Pro.
Geocomputation and first mapping were done on Google Earth Engine to calculate NDWI,
masking, and correlation model construction. Styling of maps involved scientifically suitable
color ramps (RdBu for change detection, sequential Blues for intensity of rain). Final
visualizations were refined and labeled in ArcGIS Pro.

3. Results and Discussion

This chapter presents the Spatio-temporal pattern of surface water resource dynamics
of Kano State between 2015 and 2025. With satellite-based NDWI values and CHIRPS
rainfall, we assessed the alteration of surface wetness of crops and local government areas
(LGAs) and outcomes consisted of NDWI trend maps, rainfall-NDWI correlation, zonal
statistics of crops, and interannual change of surface wetness. In combination, these results
present a snapshot of water gain and loss trends, delineate areas of hydrological
augmentation or stress, and estimate the magnitude of surface water supply availability for
the last decade. The results present a foundation upon which comparative analysis of the
degree to which natural as opposed to human factors drive irrigation potential modification
within the area can be conducted.

3.1 Spatial distribution of NDWI change in Kano State (2015-2025)
This map indicates the trend of spatial NDWI change of Kano State, Nigeria, from 2015

to 2025. Red is a significantly large NDWI loss (< -0.017), loss of surface water or irrigation
loss. Blue is NDWI gain (= 0.026), enhanced surface wetness or establishment of irrigation.
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White gaps (between -0.017 and 0.025) indicate no change with no significant change.
NDWI values were calculated from Landsat and Sentinel satellite data and then processed
inside the administrative limits of Kano State (Sogno et al,, 2022).
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Fig. 2. Spatial NDWI change in Kano

The pattern of NDWI change between 2015 and 2025 indicates a very heterogeneous
pattern of surface wetness processes in the State of Kano. A very large proportion of the
middle and southern parts indicate NDWI gain (in blue) predominantly around zones of
historic irrigated land and riparian corridors. This would be suggestive of high irrigation
practice or high surface water storage capacity, such as from infrastructural growth,
groundwater recharge, or wetness seasonality modification. Or else, the extensive NDWI
decline (in red) dominates the northern and eastern part of the state, and this would be
suggestive of drying directions because of recession in rainfall, over-pumping of water
resources, or land use conversion like agricultural encroachment of marginal lands with
diminishing water supply. This is in line with previous studies that suggested that north
Kano is susceptible to hydrological stress due to diminishing rainfall reliability and land
degradation (Niu et al,, 2015).

Table 2. NDWI change summary by LGA (2015-2025)

LGA Mean NDWI Change Max NDWI Gain Max NDWI Loss
Bebeji -0.12 +0.18 -0.26
Tofa +0.08 +0.21 -0.05
Rano -0.07 +0.14 -0.20
Gwarzo +0.03 +0.19 -0.10
Kura +0.10 +0.24 -0.03

Specifically, NDWI distribution identifies some agriculturally significant areas, which
may be representing likely failure or stress of irrigation. Food safety and water management
unwanted losses are so much greater with Kano's excessive dependency on small irrigation
agriculture. Red dots of haphazard coverage could also depict reliance on rainy seasons; the
chances of whose occurrence have been augmented through climate change (Patil et al,,
2024). Generally, the map indicates capacity for irrigation scaling (in wetting regions) and
urgent need for adaptation response in high water stress regions.

Table 2 shows spatial change in NDWI between 2015 and 2025 of some chosen LGAs
of Kano State. The optimum among them was Kura with greatest mean increase in NDWI
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(+0.10) and largest improvement (+0.24) showing notable increase in surface wetness
possibly due to enhanced irrigation or water retaining technology. Tofa also showed an
increase with mean NDWI of +0.08 and minimal water loss, the same as increasing or steady
moisture content and gwarzo could only show an increase of +0.03, with moderate gain in
water. Bebeji and Rano showed declining surface moisture with mean NDWI of -0.12 and -
0.07 respectively. Bebeji, in comparison to all the stations, expressed the highest peak water
loss (-0.26) that reflects high local drying and possible irrigation problems. Rano's readings
indicate hydrological stress vulnerability that can occur because of rainfall instability, land
degradation, or over-water abstraction.

These NDWI heterogeneity outcomes across the LGAs are also reflective of the
asymmetry of water availability and efficiency of irrigation across Kano State. These
instances of dramatic turn-around in Tofa and Kura reflect that specific water interventions
like upgraded irrigation facilities or community-based water management schemes are
already beginning to yield results (Adebayo et al., 2023). By contrast, the steeply declining
trend of Bebeji and Rano represents the principal hydrological hotspots where high levels
of groundwater abstraction, decreased rainfall recharge, and agricultural encroachment are
likely to accelerate moisture loss. Heterogeneity discerns a different NDWI trends in the
LGAs also help to highlight the heterogeneous character of water availability and irrigation
operation across Kano State. Large gains in Kura and Tofa suggest that concentrated water
interventions, long-duration irrigation schemes or community management water
schemes, could already be yielding dividends. Alternatively, large loss in Bebeji and Rano
points to hydrological stress priority areas where uncontrolled groundwater abstraction,
decreased rainfall recharge, and increased agriculture are probable causes of moisture
depletion (Olanrewaju & Adetunji, 2022). This heterogeneity confirms that it is not feasible
that one-size-fits-all water management intervention can be implemented in the state, but
instead targeted, evidence-based interventions must be used to stabilize weak LGAs while
gains are established in comparatively wetter locations. Second, large values of maximum
gain observed in Kura (+0.24) and Tofa (+0.21) also confirm the feasibility of scaling up
irrigation practice in already strong regions and therefore regional food security.
Simultaneously, Bebeji (-0.26) and Rano (-0.20) high loss levels are warning signals that
without the implementation of adaptation interventions, agriculture productivity in the two
LGAs will continue to decrease.

This highlights the need to include NDWI-based monitoring as a routine agricultural
planning for the sake of obtaining water security and climate adaptation at the LGA level.a
successful rm water management strategy will not work state-wide; instead, focused,
evidence-based interventions must be delivered to stabilize water-stressed LGAs while
consolidating gains in comparatively wetter zones. Besides this, high maximum gain figures
achieved in Kura (+0.24) and Tofa (+0.21) also suggest the potential of increasing irrigation
practice to already coping districts, and therefore local food security (Usman et al.,, 2021).
Nevertheless, loss values of high magnitude for Bebeji (-0.26) and Rano (-0.20) are alarm
bells that, if unadjusted, the farming productivity of these LGAs will decline further. This
makes it critical to integrate NDWI-based monitoring into normal agricultural water
security and climate adaptation planning at the LGA level.The research points out surface
water trends non-homogeneity in the area and demands locality-specific water
management procedures around hydrological structures (Su et al.,, 2017).

3.2 Spatial correlation between NDWI and rainfall in Kano State (2015-2025)

This map illustrates space correlation of NDWI value by year versus cumulative rainfall
for 2015-2025 in Kano State, Nigeria. Pixel-wise correlation was done using Pearson's
coefficient. Red (< -0.5) indicates high negative correlation, and blue (= 0.5) indicates a high
positive correlation between surface wetness and precipitation. White indicates low or no
correlation (between -0.1 and 0.1 and this is an overlay between NDWI and CHIRPS rainfall
data. The NDWI to rainfall spatial correlation map exhibits clear hydrological activity areas
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in Kano State. Positive strong correlations (blue) indicating high surface wetness (NDWI) at
south and east flanks are represented by high surface wetness (NDWI) indications.
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Fig. 3. Spatial correlation between NDWI and rainfall in Kano

These areas would most likely be under the control of rainfed farming or hydrologically
responsive soils where rainfall would be the major controller of surface water or ground
water condition. Such close relationships form the ground for the likelihood of the success
of seasonal planning of irrigation based on rainfall variability in these areas. Contrarily,
western and central regions show a combination of weak to strong negative correlations (in
red), wherein greater rain does not always translate to greater surface wetness. The
opposite behavior is shown due to land use activities (pavement, poor ground), poor
drainage, or groundwater pumping that influence surface moisture storage. There are
certain other circumstances when there would be more water lost to runoff and less water
retained or when irrigation allows water more than rain. Spatial variability of NDWI rainfall
correlation has disastrous effects on adaptive irrigation management. The positive-
correlation regions could be aided with rainfall-based irrigation scheduling, and the
negative-correlation regions could require supplemental water supply or even more
controlled water supply systems (Safa et al.,, 2021).

3.3 Spatial distribution of NDWI change in the Kano River Basin (2015-2025)

The map above illustrates NDWI-inducive surface water change in Kano River Basin
over the past ten years (2015-2025). Red represents high water loss or irrigation (NDWI <
-0.017), white represents no or low change areas (-0.017 < NDWI < 0.025), and blue
represents surface water or moisture gain (NDWI = 0.026). NDWI classification was derived
from multi-temporal satellite imagery acquired through Google Earth Engine of Landsat and
Sentinel-2 data (Abdalkadhum et al.,, 2021). The spatiotemporal NDWI change pattern
shows the general trend of surface water reduction in the basin, particularly in the
agricultural sub-basin, as giant red patches. This is coupled with excessive
evapotranspiration, reduced reliability of rainfall, groundwater over-extraction, and land
use intensification. Spotty surficial patches soaking water (blue patches) are spotty, with a
large number in floodplains, dams, or irrigated wetlands of the south and mid-basin and
may be caused by local hydrological input or irrigated land encroachment (Sulaiman et al,,
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2021). The limited spatial region of positive NDWI change shows that many Kano River
Basin regions are facing net drying, which is threatening sustainable irrigation and food
production, and the no-change zones (white pixels) may be either hydrologically stable
zones or regions of long-term loss and gain that cancel each other out.
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Fig. 4. Spatial distribution of NDWI change in the Kano River Basin

3.4 NDWI temporal trend in Kano State, Nigeria (2015-2025)

Decade's time series indicates a trend of fluctuation in NDWI values. NDWI went down
slowly from approximately -0.35 to the minimum, -0.42, from 2015-2019 and indicates
overall drying trend or reduction in surface water and content of soil moisture. It may be an
indicator of increased frequency of occurrence of drought, low rainfall, or intensive
abstraction of water in agricultural fields. But since 2020, the NDWI values show the
recovery at a steady pace coming back to -0.36 by 2025.

NDWI Time Series (2015-2025)
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Fig. 5. NDWI temporal trend in Kano State
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It indicates the capability of recovery of the surface wetness condition by recurrent
rains (as shown by the overlay of rain), management of irrigation, or reorientation in land
use in crop production. NDWI peak in 2022 can be considered as an unusually wet year or
effective water storage by way of good irrigation facilities. The mean negative NDWI values
throughout the period (~ -0.35 to -0.42) indicate the surface condition is generally arid as
one would anticipate in semi-arid Kano State. Since NDWI is a response to vegetation and
soil moisture in crop fields and not free water, the values reflect long-term drought stress
that would compromise irrigation efficacy and crop yields unless balanced by adaptive
water management practices (Lopez-Bermeo et al., 2022).

3.5 Annual pearson correlation between NDWI and rainfall in Kano State

The NDWI rainfalls' correlation coefficients across the 11-year time are always
negative between approximately -0.72 in 2015 and -0.50 in 2025. It indicates weak to
moderate negative correlation of surface wetness indicators with rainfall in the study
period. As compared to regular hydrological response, where high NDWI (wetness) values
always lead to more rainfall, the consistently negative correlation values could signify non-
precipitation processes including irrigation networks, land use change, groundwater
pumping, or anthropogenic change (diversion by an irrigation network of canals, artificial
runoff alteration).

Pearson Correlation: NDWI vs Rainfall (2015-2025)
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Fig. 6. Annual pearson correlation between NDWI and rainfall in Kano

The highest negative correlation is in the years 2015-2016, when this is followed by
low NDWI values and possibly drought-like conditions. After 2020, there are faint upward
trends in the correlation values, and they move towards -0.50 during 2025. Decaying trend
here may be a sign of stronger surface-rainfall coupling under a stable process, possibly
caused by stronger regulation of irrigation or land use change conserving surface humidity
better (Yang et al., 2023).

Table 3 is Pearson yearly correlation coefficient of rains and NDWI from the years The
facts reveal that the correlation was negative and consistent to some extent that rising rains
were not followed by rising surface wetness (NDWI) in each year except one. For the period
between 2015-2016, the negative correlation was very high (-0.72 and -0.68, respectively),
reflecting that the amount of rainfall was not being stored within the landscape-most likely
due to processes involving runoff, infiltration, or anthropogenically induced change of the
courses of water (Tibangayuka et al., 2025).
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Table 3. Pearson correlation between NDWI and rainfall

Year Pearson r (NDWI vs Rainfall) Interpretation

2015 -0.72 Strong negative correlation
2016 -0.68 Strong negative correlation
2017 -0.65 Moderate negative

2018 -0.60 Moderate negative

2019 -0.58 Moderate negative

2020 -0.56 Moderate negative

2021 -0.54 Weak negative

2022 -0.52 Weak negative

2023 -0.50 Weak negative

2024 -0.51 Weak negative

2025 -0.50 Weak negative

Subsequently, from 2017 onwards, the amplitude of the negative correlation gradually
reduced and in 2023-2025 had weakly negative values between -0.50. This trend indicates
a better rainfall-wetness relationship to some extent, possibly because of increased water
storage processes, managed irrigated agriculture, or land use change augmented surface
wetness response. However, many negative values for the entire 11-year series indicate that
human pressures, groundwater withdrawals, increase in irrigated agriculture, urban
growth, or land degradation still dominated natural hydrology processes over and this
decoupled surface wetness from precipitation. This requires careful management of water
regimes resources to leverage natural correlation between rainfall and surface water within
Kano State (Sogno et al., 2022).

3.6 Temporal dynamics of surface water extent in Kano State (2015-2025)
Annual change line plot of wet surface area from NDWI (ha) for 2015-2025 of Kano
State. Satellite image masked by the edge of NDWI and then annual sum with Google Earth

Engine and ArcGIS Pro geospatial toolboxes.
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Fig. 7. Temporal dynamics of surface water extent in Kano

The line plot indicates a consistent rise in the wet surface area from the 11-year period
from around 211,000 ha in 2015 to well above 360,000 ha in 2025. This indicates
consistently better surface water availability conditions either on account of better
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precipitation conditions, better irrigation facilities, or land use patterns such as reservoir
expansion or irrigation. 2022 and 2025 record values owe to exceptional hydrologic
conditions or water management in agriculture. The implication of the findings is the
potential for strategic water resource planning of irrigation water, especially for arid
regions of chronic water scarcity. Volatility, extremely small drops in 2017 and 2023,
however, call for constant caution to facilitate adaptive water resource management with
unsure climate (Serrano et al., 2019).

Table 4. Annual surface water extent

Year Wet surface area (ha)
2015 211,000
2016 223,500
2017 218,700
2018 234,000
2019 245,300
2020 276,500
2021 298,000
2022 345,800
2023 332,200
2024 348,100
2025 362,500

Table 4 also shows linear increasing trend for Kano State surface water cover
throughout the entire 11-year study. From approximately 211,000 hectaresin 2015, the wet
cover increased incrementally each year to 362,500 hectares by 2025. That is over 150,000
hectares of extra surface water in a decade. The highest annual leaps were observed
between 2019 and 2022, coincidentally spanning the period of intensified water
management interventions or prevailing hydrologic regimes. Though the development
trend increases, there are hardly any troughs in 2017 and 2023 due to local or temporary
reduction of surface dampness due to inter-annual variation of rain, dryness, or loss of
water due to evaporation. The rate of growth increase in the surface wet zone after 2020
accommodates the rejuvenation period from other irrigation schemes, increased water-
holding capacity, or policy intervention into floodplain farming. The implication is favorable
for Kano State potential for irrigation intensification, particularly with the recent
resurgence in the supply of surface water and diversity also translates to adaptive water
management as a buffer against short-term climatic risk (Ahmad & Haie, 2018).

The steady rise in surface water area reflects not only the effect of climatic variation
but also the effect of human effort in enhancing water supply. The precipitate rise between
2020 and 2022 is a reflection of synergy between natural water inflow in the form of rain
and deliberate investment in water facilities such as reservoirs, dams, and irrigation canals.
The same trend has also been reported for other semi-arid regions where water storage and
redistribution infrastructure buffers reliance on rain and improves the resilience of
agriculture. This evolution indicates how intense management of water resources can
reorganize seasonality into a more stable and reliable source of hydrology for agriculture
and domestic uses. Moreover, the expansion of wet surface area has significant food security
and rural livelihood consequences for Kano State. Further land available for irrigation with
augmented availability of surface water will enable small-scale farmers to crop diversify,
extend production periods, and reduce exposure to drought. It further enhances
complementarity between local water resource development and national agriculture
policy to reduce rain-fed system dependence (FAO, 2021). But, to maintain such good
performance, vigilant management for prevention of agricultural use against nature needs
must be implemented so that wetlands, riverine ecosystems, and recharge areas are not
overwhelmed by excessive use.
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3.7 Interpretation confidence and data limitation

Most significantly, while Kano State surface water spatial and temporal NDWI patterns
are useful, the absence of ground-truth confirmation places doubt on the interpretation of
the principal findings. NDWI thresholds and relationships to precipitation are both model-
and remote sensing-based with no field confirmation of water levels or irrigation use to
validate them (Serrano et al., 2019). This will cause over- or underestimation of wetness for
heterogeneous land cover types, highly cropped covered fields, or in anthropogenic features
such as drainage networks and irrigation canals. Additionally, the resolution of the satellite
data will mask smallholder irrigation signals, especially for highly fragmented cropland
(Muriga et al,, 2023). Even though statistical relationships show homogeneous trends, these
must be treated with caution. Further research needs to incorporate in-situ hydrologic data,
monitoring of wells, and field observations for classification accuracy and decision-making
assistance in irrigation.

Furthermore, temporal resolution of satellite-derived NDWI dataset provides
additional uncertainty in the measurement of short-term hydrological change. For example,
cloudiness during wet seasons tends to reduce the number of available scenes, thereby
limiting temporal continuity of surface water monitoring (Kansakar et al.,, 2021). This lag in
time causes flash flooding, seasonally released irrigation, or temporary ponding to be partly
recorded, leading to underrepresentation of the dynamics of water availability. Under
agricultural conditions such as Kano State, where water management occurs on a weekly or
even daily basis, such limitations substantially constrain NDWI time-series capability to
serve as a proxy for actual water distribution and irrigation planning. Therefore, sole
dependence on medium-resolution imagery without supplementing near real-time ground
observations might have the potential to underestimate the operational usefulness of NDWI
for agricultural water resource management.

In addition, spectral overlap remains a long-term limitation for the interpretation of
NDWI. Certain cover types such as wet vegetation, wetlands, or land that was irrigated
during the previous time period possess nearly equal reflectance values as open water
bodies, making it difficult to classify well . This is most significant in the semi-arid region
like Kano where fragmented cropland mosaics, surface water bodies, and anthropogenic
irrigation features exist within close proximity to each other (Tian et al., 2022). Threats of
misclassification are exacerbated by spatial resolution constraints, where small irrigation
canals or small farm ponds fall below the pixel detection limit, thus being missed or
incorporated into nearby land cover classes. These are addressed by incorporating higher-
resolution imagery, multi-sensor dataset fusion (for example, Sentinel-1 SAR with optical
data) and local ground calibration. Without such advancements, NDWI-derived outcomes
must be treated with caution, particularly where they are relevant to agriculture and
irrigation policy.

4. Conclusions

This study confirms that surface water trends in Kano State between 2015 and 2025
are significantly spatially heterogenic and temporally dynamic due to both natural climatic
factors and anthropogenic hydrological demands. While NDWI analysis shows rising
surface wetness in the central and southern parts of Kano State, prevailing drying
tendencies across the north and east regions depict looming challenges to sustainable
irrigation and agricultural productivity. The weak to negative correlation between NDWI
and rain in observations indicates a move towards anthropogenically controlled water
systems from rain-driven regimes.

In order to enhance water management for irrigation in Kano, three key steps are
recommended: local governments must invest in additional surface water storage capacity
particularly in NDWI-declining areas, abstraction levels of groundwater must be monitored
and regulated through well logging and use permits to prevent over-withdrawal, and
seasonal irrigation calendars must be regulated through spatial NDWI and rain trends maps
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to attempt to enhance the effectiveness of water utilization in semi-arid regions. Follow-up
research should involve hydrologic modeling of NDWI in conjunction with estimated
aquifer recharge and irrigation flow data in an effort to enhance comprehension of the
system dynamics. Ground validation soil moisture field monitors, crop irrigation records,
and site hydrology field surveys will play a critical role in making satellite-based evaluations
more relevant and accurate. These steps will enable more reliable, data-driven sustainable
irrigation planning for Kano State and other similar semi-arid farm regions.
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