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ABSTRACT  
Background: Understanding land cover change is crucial for sustainable urban development, particularly in 
rapidly growing coastal cities such as Semarang City, Central Java, Indonesia. Methods: This study investigates 
spatial and temporal patterns of land cover change from 2000 to 2025 by integrating multi-temporal Landsat 
satellite imagery, key spectral indices—namely the normalized difference vegetation index, normalized 
difference water index, and normalized difference built-up index—and a deep learning approach based on 
convolutional neural networks. Annual Landsat images were preprocessed for atmospheric correction, cloud 
masking, and spatial subsetting using Google Earth Engine. Adaptive thresholding was then applied to each 
spectral index to delineate vegetation, water bodies, and built-up areas. Findings: Quantitative analysis 
revealed a significant decline in vegetation cover, with the normalized difference vegetation index dropping 
from 53.66% (397.59 km²) in 2000 to 46.83% (346.98 km²) in 2025, driven by urban expansion and landscape 
conversion, especially in coastal and lowland areas. Normalized difference water index analysis indicated a 
reduction and fragmentation of water bodies after 2015, linked to reclamation, sedimentation, and urban 
encroachment. Conversely, built-up areas expanded steadily, confirming accelerated urbanization. Scatter plot 
and regression analyses showed strong inverse relationships among vegetation, water, and built-up land, 
emphasizing ecological trade-offs and the loss of green-blue infrastructure. Conclusion: To enhance 
classification accuracy, a convolutional neural network was trained and validated on image patches, achieving a 
validation accuracy of 60%—outperforming conventional threshold-based methods by better capturing 
complex spatial patterns. The integrated remote sensing and deep learning framework offers robust potential 
for long-term, large-area land cover monitoring. Novelty/Originality of this article: The novelty of this 
research lies in its combined use of spectral indices and deep learning for multi-decadal land cover change 
analysis, providing a transferable methodology for other rapidly urbanizing coastal cities. 
 

KEYWORDS: land cover change; spectral indices; convolutional neural network (CNN); 
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1. Introduction  
  

Urban expansion and land use change are among the most urgent and complex 
challenges facing rapidly growing Indonesian cities, especially those located in dynamic 
coastal and lowland regions such as Semarang City. These processes, driven by accelerated 
population growth, economic development, and climate pressures, significantly transform 
urban ecosystems, disrupt local hydrological cycles, and intensify the risks associated with 
environmental hazards (Li et al., 2020; Neumann et al., 2015; Yao et al., 2021). The ability 
to monitor and analyze these spatial-temporal dynamics is critical for supporting 

https://journal-iasssf.com/index.php/AES
https://journal-iasssf.com/index.php/AES
https://journal-iasssf.com/index.php/AES
https://issn.brin.go.id/terbit/detail/20230807371807340
https://creativecommons.org/licenses/by/4.0/
https://journal-iasssf.com/index.php/
mailto:nurizzatulh5@gmail.com


Hikmah & Manurung (2025)    40 

 
AES. 2025, VOLUME 3, ISSUE 1                                                                                                https://doi.org/10.61511/aes.v3i1.2025.1883 

sustainable urban planning and effective environmental management (Santoso et al., 2022; 
Wang et al., 2022). 

From the perspective of land change science, understanding the spatial patterns, 
underlying drivers, and socio-ecological consequences of land transformation is 
fundamental for developing adaptive policies and urban resilience strategies (Turner et al., 
2007). Furthermore, advances in urban ecology reveal that urbanization produces feedback 
loops that alter vegetation structure, water distribution, and biodiversity, highlighting the 
need for integrated approaches to maintain ecosystem services in rapidly transforming 
cities (Grimm et al., 2008; Alberti, 2016; Mahdianpari et al., 2021; Lin et al., 2024). 

Remote sensing technologies, supported by the use of spectral indices such as the 
Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index 
(NDWI), and Normalized Difference Built-up Index (NDBI), have become invaluable tools 
for monitoring land cover change, classifying vegetation, water bodies, and built-up areas 
across urban landscapes (Gao, 1996; McFeeters, 1996; Zha et al., 2003; Abdi, 2020; Santoso 
et al., 2022). However, the limitations of threshold-based methods—including their 
sensitivity to atmospheric variation, spectral confusion between surface types, and 
inconsistencies due to seasonal changes—necessitate the adoption of more advanced 
analytical techniques (Zhu & Woodcock, 2016; Kaimaris et al., 2019; Wang et al., 2022; Gao 
et al., 2023). 

In recent years, machine learning and especially deep learning models such as 
Convolutional Neural Networks (CNNs) have demonstrated remarkable improvements in 
the classification accuracy of remote sensing imagery by automatically learning hierarchical 
spatial features and complex data patterns (Ma et al., 2019; Zhu et al., 2017; Li et al., 2021; 
Chen et al., 2023). Recent reviews and empirical studies have confirmed the effectiveness of 
hybrid and attention-based CNN architectures for monitoring urban land cover and land use 
change in various global contexts, including Asia and Indonesia (Mahdianpari et al., 2021; 
Lin et al., 2024; Amani et al., 2020). 

Although their application has grown globally, there remains a paucity of research 
utilizing CNN-based approaches for the long-term analysis of land cover dynamics in 
Indonesian urban and coastal contexts, where land transformation occurs rapidly and 
spatial heterogeneity is pronounced (Santoso et al., 2022; Yao et al., 2021). This study aims 
to apply a combined approach of spectral indices analysis and CNN-based deep learning to 
analyze land cover changes in Semarang City between 2000 and 2025. By integrating 
traditional remote sensing indices with modern deep learning methods, this research seeks 
to enhance the understanding of spatial-temporal dynamics of vegetation, water bodies, and 
built-up areas, and to evaluate the effectiveness of these approaches in supporting 
sustainable urban development strategies. 

 
2. Methods 
 

This research was conducted in Semarang City, Central Java Province, Indonesia, an 
urban coastal city that has been experiencing rapid land use and land cover changes due to 
urbanization, industrial development, and environmental pressures. The city's 
geographical characteristics, which include coastal lowlands and upland areas, make it a 
significant case study for analyzing spatial-temporal land cover dynamics (Li et al., 2020; 
Santoso et al., 2022; Yao et al., 2021). 

Multi-temporal Landsat satellite imagery spanning from 2000 to 2025 was utilized to 
monitor land cover changes over a 25-year period. Landsat 5 Thematic Mapper (TM) 
imagery was employed for the period 2000–2011, Landsat 7 Enhanced Thematic Mapper 
Plus (ETM+) for gap-filling between 2000 and 2012, Landsat 8 Operational Land 
Imager/Thermal Infrared Sensor (OLI/TIRS) for 2013–2021, and Landsat 9 Operational 
Land Imager-2 (OLI-2) for 2022–2025. All imagery was accessed through the Google Earth 
Engine (GEE) platform, utilizing surface reflectance products that have been 
atmospherically corrected (Gorelick et al., 2017; Kumar & Mutanga, 2018; Amani et al., 
2020). The spatial resolution used for all datasets was 30 meters. 
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Fig. 1. Research location 

 
The preprocessing steps included cloud masking using the Quality Assessment (QA) 

bands to remove clouds and cloud shadows, selecting scenes with less than 20% cloud 
cover, creating annual mosaics for each year, and cropping images based on the 
administrative boundary of Semarang City. These steps ensured the production of 
consistent, cloud-free imagery suitable for temporal analysis (White et al., 2014; Gao et al., 
2023). Land cover analysis was performed using three major spectral indices. Normalized 
Difference Vegetation Index (NDVI) was calculated as (NIR−RED)/(NIR+RED) to assess 
vegetation health and density (Gao, 1996; Xue & Su, 2017). Normalized Difference Water 
Index (NDWI) was calculated as (GREEN−NIR)/(GREEN+NIR) to enhance water body 
detection (McFeeters, 1996; Xu, 2006; Santoso et al., 2022). Normalized Difference Built-up 
Index (NDBI) was calculated as (SWIR−NIR)/(SWIR+NIR) to delineate built-up urban areas 
(Zha et al., 2003; Kaimaris et al., 2019; Li et al., 2021). 

For Landsat 5 TM and Landsat 7 ETM+, NDVI used Band 4 (NIR) and Band 3 (RED), 
NDWI used Band 2 (GREEN) and Band 4 (NIR), and NDBI used Band 5 (SWIR) and Band 4 
(NIR). For Landsat 8 OLI and Landsat 9 OLI-2, NDVI used Band 5 (NIR) and Band 4 (RED), 
NDWI used Band 3 (GREEN) and Band 5 (NIR), and NDBI used Band 6 (SWIR1) and Band 5 
(NIR). Land cover classification into vegetation, water bodies, and built-up areas was 
performed annually through thresholding based on the histogram distribution of each 
spectral index. Threshold values were adaptively adjusted each year to account for seasonal 
and environmental variability. The total area for each land cover class was calculated in 
square kilometers and as a percentage of the total study area (Abdi, 2020; Wang et al., 
2022). 

To improve classification accuracy, a Convolutional Neural Network (CNN) model was 
developed. A total of 2,755 image patches (64×64 pixels) were used for training, and 689 
patches for validation. The CNN model was constructed using a sequential architecture 
composed of convolutional layers, pooling layers, and dense layers, implemented using 
TensorFlow and Keras libraries (Abadi et al., 2016; Chollet, 2021; Li et al., 2021). The model 
was trained using the Adam optimizer with categorical cross-entropy loss, applying early 
stopping to prevent overfitting (Kingma & Ba, 2014; Prechelt, 1998; Srivastava et al., 2014; 
Mahdianpari et al., 2021). The final model achieved a validation accuracy of 60% and a 
validation loss of 0.6758, indicating moderate performance in differentiating land cover 
types. Recent studies confirm that attention-based or hybrid CNN architectures can further 
enhance urban land cover classification using multitemporal and multi-source satellite data 
(Gao et al., 2023; Chen et al., 2023; Lin et al., 2024). 

Scatter plot analyses were conducted to examine the relationships between NDVI, 
NDWI, and NDBI across the 2000–2025 period. High coefficients of determination (R² > 
0.99) were found, confirming the consistency and complementary relationships among 
vegetation, water, and built-up areas in Semarang City. 
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All stages of image acquisition, preprocessing, spectral index calculation, classification, 
deep learning model development, and data visualization were performed using open-
source tools, specifically Google Earth Engine and Python programming in Google Colab 
(Amani et al., 2020; Bisong, 2019). No commercial Geographic Information Systems (GIS) 
software was used in this study. 

 

 
Fig. 2. Research flowchart 

 

3. Results and Discussion 
 
3.1 NDVI analysis of Semarang City 2000 – 2025 
 

The Normalized Difference Vegetation Index (NDVI) analysis provided a 
comprehensive understanding of vegetation dynamics in Semarang City over a 25-year 
period. NDVI is a widely used spectral index to measure vegetation health and density by 
comparing near-infrared (NIR) and red reflectance values, with higher NDVI values 
indicating denser and healthier vegetation (Gao, 1996). 

Figure 3 displays a chronological sequence of NDVI maps for Semarang City at key 
temporal intervals—2000, 2007, 2009, 2015, 2020, 2024, and 2025—using a color scale 
from deep red (very low NDVI, representing built-up or bare surfaces) to dark green (high 
NDVI, indicating dense and healthy vegetation). In 2000, NDVI values were predominantly 
high across much of the landscape, as indicated by extensive light to medium green shades, 
with the densest vegetation concentrated in the southern and eastern upland regions. In 
contrast, the northern coastal and city core zones showed lower NDVI values, reflecting 
areas of early urbanization and natural coastal features. 

By 2007, a marked reduction in medium and dark green tones became evident, 
particularly within the central and northern areas. This pattern points to the initial phase 
of rapid vegetation loss, coinciding with intensified urban growth and active land 
conversion in peri-urban zones. In 2009, a partial recovery or stabilization of vegetation 
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was observed, with medium green shades reappearing more frequently compared to 2007. 
This may be attributed to seasonal regrowth, targeted urban greening efforts, or a 
temporary slowdown in land conversion. 

 

 
Fig. 3. NDVI value of Semarang City 2000 - 2025 

 
Moving to 2015, the spatial prevalence of lower NDVI values (yellowish to light green) 

increased, particularly in the northern and central lowlands. This trend aligns with 
accelerated infrastructure development and land reclamation activities, especially along the 
coast. The maps for 2020 and 2024 reveal a continued shift toward paler greens and 
yellows, signifying ongoing fragmentation and isolation of dense vegetation patches. During 
these years, urban sprawl advanced further outward from the city center, confining much 
of the remaining vegetated land to upland peripheral areas. By 2025, the landscape is 
dominated by low to medium NDVI values, visually confirming extensive vegetation loss 
and the simplification of the city’s ecological structure. The only significant remnants of 
higher NDVI are confined to isolated patches in the southern upland zones, while the 
majority of lowland and coastal regions exhibit greatly reduced vegetative cover. 

Collectively, these NDVI maps visually corroborate quantitative analyses of land cover 
change, highlighting the spatial correspondence between the decline and fragmentation of 
vegetated areas and the expansion of built-up surfaces. The upland buffer in the south and 
east emerges as a critical last stronghold for urban vegetation, vital for maintaining 
ecosystem services and the city’s climate resilience. Although some seasonal or inter-annual 
fluctuations—such as those between 2007 and 2009—may reflect climatic variability or the 
effect of urban greening policies, these do not significantly alter the prevailing long-term 
trend of vegetation decline. The persistent loss and spatial fragmentation of vegetation 
documented in the NDVI sequence raises pressing concerns for local microclimate 
regulation, biodiversity conservation, stormwater management, and the overall quality of 
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urban life in Semarang. These spatial findings underscore the need for targeted green space 
protection, landscape connectivity strategies, and sustainable urban planning—especially 
in rapidly transforming lowland and coastal districts (see Fig. 3 for a visual reference of the 
NDVI evolution and fragmentation of green spaces across Semarang City). 

 

 
Fig. 4. Histogram of NDVI distribution value of Semarang City (2000-2025) 

 
Figure 4 illustrates the evolution of the frequency distribution of NDVI values for 

Semarang City across seven selected years between 2000 and 2025, offering a statistical 
perspective on the city’s vegetation status and its temporal changes. In 2000, the histogram 
presents a broad, asymmetric distribution, with most NDVI values ranging from 0.1 to 0.5 
and peaking between 0.2 and 0.35. This pattern reflects the dominance of dense and healthy 
vegetation, particularly in upland and peri-urban regions, consistent with the extensive 
green coverage observed in the corresponding NDVI maps. However, by 2007 and 2009, 
there is a pronounced leftward shift in the histogram. The distribution peaks move closer 
to the 0.15–0.30 range, and both the height and spread of the higher NDVI bins are reduced, 
indicating a marked loss of dense vegetation and the increasing prevalence of moderate to 
sparse vegetation (Li et al., 2020). A short-term recovery can be detected in 2009, where 
the rightward movement of the peak suggests a rebound in vegetation—likely due to land 
management efforts, natural regrowth, or annual climatic variability—though this does not 
alter the overall declining trend. 

From 2015 through 2025, the histograms exhibit further compression and 
concentration in the lower NDVI bins, mainly within the 0.05–0.25 range. The overall range 
of NDVI values narrows, and the highest frequencies shift consistently towards lower NDVI 
values. By 2025, the histogram is sharply peaked around 0.1–0.2, with relatively few pixels 
registering high NDVI values, illustrating the widespread dominance of sparsely vegetated 
or non-vegetated surfaces. This statistical pattern is emblematic of a substantial loss and 
homogenization of urban vegetation over time. 

The observed leftward shift and narrowing of the NDVI distribution clearly 
demonstrate not only the reduction in vegetation cover but also an increase in the spatial 
fragmentation and isolation of green patches, particularly in lowland and coastal districts 
most affected by urban expansion. The temporal dynamics captured in these histograms 
echo the spatial trends seen in the NDVI maps (Fig. 3), providing robust quantitative 
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support for the ongoing transition toward a more uniform, built-up urban landscape. Such 
a trend may have negative consequences for local microclimate regulation, air quality, 
biodiversity, and urban resilience to environmental hazards. Ultimately, the declining 
diversity in NDVI values points to a loss of ecological complexity and landscape 
functionality, underscoring the importance of sustainable land management and green 
infrastructure planning in Semarang City. 

 

 
Fig. 5. Classification of NDVI value of district administration with coastal fence  

Tangerang Regency (2000-2025) 

 
Figure 5 presents the classification of NDVI values into three distinct land cover 

categories—non-vegetation, sparse to moderate vegetation, and high vegetation—
capturing spatial and temporal land cover dynamics in Semarang City across seven different 
time points between 2000 and 2025. In 2000, the city’s landscape was largely dominated by 
areas classified as sparse to moderate vegetation, particularly in the central and peri-urban 
regions, with substantial patches of high vegetation concentrated in the southern and 
eastern uplands (Seto et al., 2011). Non-vegetation areas were primarily limited to the 
urban core and several lowland or coastal strips, indicating that built-up or bare surfaces 
had not yet widely encroached upon the city’s green spaces. 

As the years progressed, especially during the 2007–2009 period, there was a marked 
contraction and fragmentation of high vegetation zones. These green patches became 
increasingly isolated and restricted to the periphery, while non-vegetation areas expanded 
rapidly across the central and northern lowlands. This spatial transformation reflects the 
intensification of urban expansion and infrastructure development, which has gradually 
replaced vegetated landscapes with built-up land. By the period 2015–2025, non-vegetation 
zones (shown in red) had overtaken much of Semarang’s lowland and coastal districts, 
leaving high vegetation only in isolated fragments, particularly in upland areas. Sparse to 
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moderate vegetation areas, meanwhile, served as transitional buffers but became 
increasingly scarce and disconnected. 

These spatio-temporal patterns illustrate prominent “edge effects,” where the 
remaining high vegetation patches are surrounded and pressured by expanding non-
vegetation zones, heightening their vulnerability to anthropogenic disturbance. The 
transformation is particularly dramatic along the coastal fringe and at lower elevations, 
where the impact of urbanization and land reclamation is most pronounced. By 2025, the 
vast majority of high vegetation is almost exclusively confined to the upland buffer in the 
south, while non-vegetation areas have engulfed much of the city core, northern, and 
eastern sectors. 

Ecologically, the spatial loss and fragmentation of vegetated areas significantly reduce 
landscape connectivity, threatening local biodiversity, microclimate regulation, and 
essential ecosystem services such as stormwater management and carbon sequestration. 
The proliferation of non-vegetation zones directly correlates with documented increases in 
population, infrastructure growth, and land conversion pressures in Semarang—trends 
that are well established in the literature (Li et al., 2020; Firman, 2009). The persistence of 
a high vegetation buffer in the upland south underscores its critical role as a last ecological 
refuge for the city, vital for supporting climate adaptation and ensuring the long-term 
sustainability of urban development. 

 

 
Fig. 6. Changes in vegeration area based on NDVI (2000 – 2025) 

 
Figure 6 presents the temporal evolution of the proportion of vegetation area in 

Semarang City, as determined from NDVI-based classification, spanning the period from 
2000 to 2025. The trend line depicted in this figure clearly illustrates both abrupt and 
gradual shifts in land cover throughout the 25-year observation window. At the start of the 
period, in 2000, vegetation covered approximately 54% of the city’s total area. However, 
this figure declined sharply to around 30% by 2007, signaling a phase of rapid land use 
change likely driven by urban expansion, major infrastructure development, and large-scale 
reclamation activities in peri-urban and coastal regions. 

Between 2007 and 2009, there was a notable partial recovery, with vegetation cover 
rebounding to about 44%. This resurgence could be attributed to reforestation efforts, 
urban greening initiatives, natural regrowth following disturbances, or even favorable 
remote sensing conditions, such as reduced cloud cover or seasonal factors during image 
acquisition. From 2009 onwards, the percentage of vegetated area continued to rise, 
reaching just above 51% by 2020. This phase of stabilization and increase suggests some 
success from vegetation protection policies or shifts in land management priorities during 
this interval. 
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Nevertheless, after 2020, the trend reverses, with a gradual but steady decline in 
vegetation cover down to 47% by 2025. This late-period decrease may indicate renewed 
development pressures, persistent urban sprawl, or intensification of land use in the few 
remaining green spaces, potentially exacerbated by the delayed impact of infrastructure 
projects initiated in prior years. 

 
3.2 NDWI analysis of Semarang City 2000–2025 
 

The Normalized Difference Water Index (NDWI) analysis provided valuable insights 
into the dynamics of water body coverage in Semarang City from 2000 to 2025. NDWI 
enhances the detection of surface water features by maximizing reflectance of water in the 
green band and minimizing the low reflectance in the near-infrared (NIR) band (McFeeters, 
1996). 

 
Fig. 7. NDWI value of Semarang City (2000-2025) 

 
Figure 7 presents the spatiotemporal evolution of NDWI values for Semarang City at 

key intervals between 2000 and 2025, offering a visual narrative of changes in surface water 
coverage over a 25-year period. In the year 2000, NDWI mapping reveals extensive areas of 
higher NDWI values—depicted in darker blue hues—particularly concentrated along the 
city’s northern coastal fringe and in the riverine corridors that traverse the urban landscape. 
These zones represent open water bodies and wetlands, which are critical for maintaining 
ecological balance and buffering the city against hydrological hazards. 

By 2007 and 2009, a discernible contraction of high NDWI regions is apparent, with 
visible reductions along the coastline and some inland water features. While a few patchesof 
high NDWI remain, much of the city, especially the western and central zones, begins to 
exhibit lighter blue shades, indicating a decrease in water content and the encroachment of 
non-water surfaces such as bare land or new development. 

The transition accelerates in the subsequent years. By 2015, and especially in 2020, 
2024, and 2025, the spatial distribution of high NDWI values becomes increasingly 
fragmented and scarce. The coastal margin, once dominated by open water, now shows 
lighter blue and even pale tones, confirming the significant loss and isolation of surface 
water bodies. These changes mirror both physical reclamation and natural processes such 
as sedimentation or channelization. The remaining high NDWI areas are confined to a few 
isolated zones, while the majority of Semarang’s urban extent is characterized by 
consistently lower NDWI values, marking a steady shift toward impervious, non-water 
surfaces. 

Overall, the visual evidence provided by these NDWI maps clearly documents the 
progressive reduction, fragmentation, and marginalization of water bodies in Semarang 
City. This spatial transformation not only reflects the intensity of urban expansion and land 
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reclamation but also signals growing vulnerability to flooding, loss of aquatic habitats, and 
reduced hydrological resilience—trends that demand urgent and integrated water 
management interventions in the city’s development planning. 

 

 
Fig. 8. Histogram of NDWI distribution value of Semarang City (2000-2025) 

 
Figure 8 presents the temporal progression of NDWI value distributions for Semarang 

City over selected years between 2000 and 2025, providing statistical insight into the 
dynamics of surface water features. In 2000, the histogram reveals a bimodal pattern with 
a significant peak in the positive NDWI range, notably between 0.0 and 0.15, reflecting the 
widespread presence of open water bodies and moist surfaces. Another peak at negative 
values indicates the dominance of non-water surfaces such as dry soils and built-up areas, 
but the positive NDWI peak is both high and broad, underscoring the abundance of water 
features in the city’s landscape at the beginning of the observation period. 

As the years progress, the positive NDWI peak gradually contracts and shifts leftward, 
while the negative peak becomes increasingly prominent. By 2007 and 2009, the 
distribution shows reduced frequency in high NDWI bins, signaling a decline in water bodies 
and an expanding prevalence of non-water or impervious surfaces. In 2015, the positive 
NDWI peak becomes narrower and further diminishes in height, highlighting the continuing 
reduction in open water extent. The years 2020, 2024, and 2025 exhibit a persistent and 
pronounced dominance of the negative NDWI range, with the positive tail of the distribution 
nearly vanishing. This change corresponds to the widespread transformation of the urban 
landscape, where previously water-rich zones have been converted to built-up or barren 
land, and the presence of surface water becomes increasingly rare and fragmented. 

The histogram analysis thus quantitatively supports the spatial evidence provided by 
the NDWI maps, confirming a long-term trend of water loss and landscape aridification. The 
clear leftward shift and narrowing of the positive NDWI peak over time reflect not only 
physical reduction of water bodies, but also the homogenization of the city’s hydrological 
landscape—where urban expansion and reclamation activities have increasingly 
dominated. This trajectory highlights the pressing need for integrated and adaptive water 
resource management policies to prevent further decline in surface water, protect 
remaining aquatic ecosystems, and safeguard the city’s resilience to hydrological hazards. 

Figure 9 provides a series of binary classification maps illustrating the spatial 
distribution of water and non-water surfaces in Semarang City across the years 2000 to 
2025, as identified by NDWI thresholding. In the year 2000, the classification map shows 
extensive contiguous water bodies (blue) along the northern coastal fringe and within major 
riverine corridors, indicating a landscape still strongly influenced by natural hydrological 
features. As time progresses, however, these water zones contract and become increasingly 
fragmented. By 2007 and 2009, the once broad coastal water belt narrows, and isolated 
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water patches become visible in inland regions, reflecting the initial impacts of urban 
encroachment and reclamation activities. 

 

 
Fig. 9. NDWI classification water and non water of Semarang City (2000-2025) 

 
The trend intensifies in subsequent years. By 2015, the water class is largely restricted 

to the very edge of the coastline and a handful of small, scattered patches further inland. The 
inland riverine features that were once prominent have largely disappeared from the 
classification. In the 2020, 2024, and 2025 maps, the contraction of water bodies is even 
more pronounced, with the blue areas representing water becoming highly restricted, thin, 
and occasionally disjointed. Many former water-covered regions have transitioned to non-
water surfaces (gray), a direct consequence of ongoing land reclamation, infrastructure 
development, and the expansion of impervious urban surfaces. 

This series of maps visually confirms the spatial extent and severity of water loss in 
Semarang City over the past quarter-century. The progressive reduction in the water class 
underscores the rapid pace of hydrological transformation driven by urban development. It 
also highlights the vulnerability of remaining aquatic habitats, especially in lowland and 
coastal districts, where human pressures are most intense. The NDWI classification thus 
provides compelling spatial evidence for the urgent need to integrate water resource 
protection into urban planning, emphasizing the conservation of critical water bodies to 
ensure the city’s long-term hydrological and ecological resilience. 

The quantified results of water area changes are depicted in Figure 10. In 2000, water 
bodies accounted for approximately 19.01% (140.89 km²) of Semarang City's area. This 
proportion increased slightly to 25.44% (188.51 km²) in 2015, likely reflecting seasonal 
water body expansion or successful water conservation efforts. However, a consistent 
decline was noted thereafter, with water body extent dropping to 25.06% (185.66 km²) in 
2024, and sharply falling to 18.37% (136.12 km²) by 2025. 

The consistent reduction in water surface area is strongly indicative of environmental 
and anthropogenic pressures such as land reclamation, coastal infill, urban encroachment, 
and sediment deposition processes. These patterns are commonly observed in rapidly 
urbanizing coastal zones globally, where surface water systems are altered or replaced to 
accommodate infrastructure development (Rokni et al., 2014; Li et al., 2020). 

The increasingly negative mean NDWI values observed from 2000 onwards suggest a 
growing dominance of impervious surfaces within historically water-covered areas. Such 
transitions could have significant implications for the local hydrological cycle, biodiversity, 
and the city's vulnerability to flooding, especially considering Semarang’s coastal location 
and susceptibility to tidal inundation (Neumann et al., 2015). The NDWI analysis reveals 
that Semarang City has undergone substantial hydrological changes over the past two and a 
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half decades, necessitating urgent integrated water resource management and sustainable 
urban development strategies. 

 

 
Fig. 10. Water area change based on NDWI in Semarang City (2000-2025) 

 
3.3 NDBI analysis of district administration with coastal fence Tangerang Regency (2000–
2025) 
 

The Normalized Difference Built-up Index (NDBI) analysis was employed to assess the 
spatial and temporal patterns of urban expansion and built-up area growth in Semarang City 
between 2000 and 2025. NDBI is designed to enhance the detection of built-up land by 
emphasizing the contrast between the shortwave infrared (SWIR) and near-infrared (NIR) 
bands, with higher NDBI values indicating more urbanized surfaces (Zha et al., 2003). 

 

 
Fig. 11. NDBI value of Semarang City (2000-2025) 
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Figure 11 shows the spatial distribution of NDBI values across Semarang City from 
2000 to 2025. In 2000, areas with high NDBI values — representing built-up regions — were 
primarily concentrated in the city center and industrial zones. Over time, these high NDBI 
areas expanded outward into suburban and peri-urban areas, reflecting the process of urban 
sprawl and the intensification of land development activities. 

 

 
Fig. 12. Histogram of NDBI value of Semarang City (2000-2025) 

 
Figure 12 presents the histogram distribution of NDBI values across the study period. 

In 2000, the histogram was skewed towards lower NDBI values, consistent with a landscape 
still dominated by vegetated and undeveloped land. As time progressed, particularly after 
2010, the histogram shifted rightward toward higher NDBI values, indicating an increase in 
built-up surfaces. The pronounced increase in high NDBI value frequencies in later years 
suggests accelerating urban expansion, especially after 2015, correlating with broader 
national trends of urbanization in Indonesian cities (Firman, 2009). 

 

 
Fig. 13. Built-up area change of Semarang City (2000-2025) 
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Figure 13 presents the temporal changes in the extent of built-up areas. In 2000, built-
up land accounted for a negligible proportion (approximately 0.02 km², <1%). Over the 
years, this figure increased steadily, reaching 0.15 km² in 2007, maintaining slight 
fluctuations thereafter, and reaching 0.05 km² in 2024. Although the absolute numbers 
reported are relatively small due to classification threshold settings and Landsat spatial 
resolution limitations (30 meters), the general trend clearly points to a growing footprint of 
urbanized land within Semarang City. 

It is important to note that some fluctuations observed in the built-up area data, such 
as the apparent decrease in certain years, may be attributed to mixed pixel effects, seasonal 
vegetation cover over built-up land, or variations in satellite acquisition dates (Zhu & 
Woodcock, 2016). This issue highlights one limitation of relying solely on spectral indices 
for urban monitoring. Consequently, the integration of NDBI analysis with deep learning 
models, such as Convolutional Neural Networks (CNNs), as implemented in this study, offers 
a pathway to improving built-up land classification accuracy by incorporating spatial 
texture and multi-spectral information (Zhu et al., 2017). The NDBI analysis underscores the 
ongoing urban expansion of Semarang City over the past two and a half decades, a trend that 
necessitates sustainable urban planning approaches to mitigate environmental degradation, 
reduce disaster risks, and ensure the provision of adequate infrastructure and services for 
a growing population. 

 
3.4 Scatter plot relation between NDVI, NDWI and NDBI in Semarang City (2000–2025) 
  

The relationships among NDVI, NDWI, and NDBI values across Semarang City from 
2000 to 2025 were explored using scatter plot analyses (Figure 14). Scatter plots are a 
powerful visualization tool to assess correlations and potential trade-offs between different 
land cover indicators derived from remote sensing data (Weng, 2012). 

 

 
Fig. 14. Scatter plot of NDVI, NDWI and NDBI value of Semarang City (2000-2025) 

  
In the scatter plots, a clear negative correlation was observed between NDVI and NDBI 

values. Areas with high NDVI values, indicating dense vegetation, corresponded to low NDBI 
values, characteristic of non-urbanized, vegetated land. Conversely, areas with high NDBI 
values, indicative of built-up surfaces, were associated with lower NDVI values, confirming 
the well-known inverse relationship between vegetation cover and urban expansion (Zha 
et al., 2003). Similarly, NDWI and NDBI exhibited an inverse relationship. Higher NDWI 
values, representing the presence of water bodies, were generally associated with low NDBI 
values. This pattern suggests that urban development often encroaches upon water bodies, 
replacing natural aquatic features with impervious built surfaces, a phenomenon commonly 
observed in coastal cities undergoing rapid development (Li et al., 2020). 

The positive correlation between NDVI and NDWI values was also evident. Regions 
with high NDVI typically coincided with higher NDWI values, reflecting areas where 
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vegetation cover coexists with healthy surface water conditions, such as wetlands, 
mangrove forests, or riparian zones. The strong coupling between vegetation and water 
resources emphasizes the interconnectedness of ecological systems in Semarang’s coastal 
and lowland environments. 
 Statistical validation of these relationships was supported by the high R-squared (R²) 
values obtained from the regression analysis, with R² for NDVI at 0.9927, R² for NDWI at 
0.9929, and R² for NDBI at 0.9932. These results demonstrate that the three indices are 
highly reliable and complementary for distinguishing major land cover types in Semarang 
City. They also validate the robustness of using NDVI, NDWI, and NDBI as input features for 
machine learning-based classification models, such as the Convolutional Neural Network 
(CNN) developed in this study. 

However, despite the strong statistical correlations, it is important to note certain 
limitations. Seasonal variability, atmospheric disturbances, and spectral confusion—such 
as similarities between dry soil, built-up surfaces, and sparsely vegetated land—can 
introduce noise and misclassification in remote sensing analysis (Zhu & Woodcock, 2016). 
These factors highlight the importance of integrating pixel-based spectral indices with 
spatial-textural features through deep learning approaches to achieve higher classification 
accuracy. The scatter plot analysis provided critical evidence of the interrelationships 
among vegetation, water, and urban surfaces, reinforcing the ecological trade-offs occurring 
as Semarang City undergoes rapid urban transformation. 
 
3.5 Convolutional Neural Network (CNN) model of Semarang City 2000–2025 
  

To improve the accuracy of land cover classification beyond the use of traditional 
spectral indices, a Convolutional Neural Network (CNN) model was developed in this study. 
CNNs have shown superior performance in remote sensing applications by automatically 
learning hierarchical spatial features from satellite imagery (Ma et al., 2019; Zhu et al., 
2017). 

 

 
Fig. 15. CNN model of land cover change area of Semarang City (2000-2025) 

  
Figure 15 illustrates the CNN-based land cover classification model applied to 

Semarang City. The model was built using a sequential architecture, consisting of multiple 
convolutional layers followed by max-pooling layers and fully connected dense layers. The 
model was implemented using TensorFlow and Keras libraries in the Google Colab 
environment. 
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Fig. 16. Patches of data training dan data testing of CNN model 

 
To prepare the dataset, image patches of 64×64 pixels were extracted from the 

processed Landsat composite images. A total of 2,755 patches were assigned to the training 
dataset, while 689 patches were allocated for validation purposes (Figure 16). The patches 
were sampled to represent various land cover classes, including vegetation, water, and 
built-up areas. 

 

 
Fig. 17. CNN model sequential of Semarang City (2000-2025) 

 

Figure 17 shows the sequential CNN model architecture used in this study. The model 
was trained using the Adam optimizer with a categorical cross-entropy loss function. Early 
stopping criteria were employed to prevent overfitting during training. 

 

 
Fig. 18. Training and validation accuracy of CNN model in district administration with coastal fence 

Tangerang Regency (2000-2025) 

 
Figure 18 presents the training and validation accuracy over 30 epochs. The model 

achieved a final validation accuracy of 60.00% with a validation loss of 0.6758. Although 
moderate, this level of performance demonstrates the potential of CNNs to learn meaningful 
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spatial patterns and improve land cover classification compared to threshold-based 
spectral index methods alone. 

Several factors likely influenced the CNN model's moderate accuracy. First, the limited 
size of the training dataset may have restricted the model’s ability to generalize complex 
land cover variability across Semarang City. Class imbalance was also evident, with 
vegetation patches being more dominant compared to built-up and water classes. This 
imbalance can cause the model to bias its predictions toward the majority class, a common 
issue in remote sensing classification tasks (Li et al., 2020). 

High spectral similarity among land cover types, particularly between dry bare soil and 
built-up surfaces, introduced further classification confusion. In coastal environments like 
Semarang, seasonal variability in surface moisture and vegetation cover can also complicate 
the CNN’s feature learning process. 

Moreover, the relatively simple CNN architecture used in this study, which lacked 
deeper convolutional blocks or regularization techniques such as dropout, may have limited 
the model’s potential. Previous research has shown that more complex architectures, such 
as U-Net, ResNet, or hybrid CNN-RNN models, often outperform simpler sequential models 
for high-resolution land cover mapping (Zhu et al., 2017). 

Despite these limitations, the CNN-based classification approach provides a significant 
improvement over traditional spectral index thresholding by incorporating spatial texture, 
context information, and non-linear relationships between spectral bands. This highlights 
the promise of integrating deep learning techniques with remote sensing data for more 
accurate monitoring of dynamic urban and coastal environments. 
 
3.6 Discussion 
  

The findings of this study provide clear evidence of rapid and significant land cover 
transformation in Semarang City over the past two and a half decades, driven largely by 
urbanization and related socio-economic developments. The persistent decline in NDVI 
values and vegetated area, as observed in the spatial and temporal analyses, reflects the 
extensive conversion of green spaces to built-up and impervious surfaces. This pattern is 
particularly evident in lowland and coastal regions, where urban expansion, industrial 
development, and infrastructure projects have been most intense. Such transformations are 
consistent with broader trends documented in rapidly urbanizing cities across Southeast 
Asia, where population growth and economic pressure have led to the reduction and 
fragmentation of urban green spaces (Seto et al., 2011; Li et al., 2020). 

The steady loss of vegetation has important ecological and social consequences. Urban 
vegetation plays a crucial role in providing ecosystem services such as climate regulation, 
air purification, flood mitigation, and enhancement of urban resilience. The observed 
decline in vegetated area may therefore contribute to heightened vulnerability to extreme 
weather events, increased urban heat, and loss of biodiversity (Neumann et al., 2015; 
Pettorelli et al., 2005). The analysis of NDWI further reveals a decline in water body 
coverage across Semarang, with spatial contraction of rivers, ponds, and wetlands most 
pronounced in the city’s western and coastal zones. This trend likely reflects not only land 
reclamation and drainage for urban expansion, but also changes in hydrological processes 
and possible impacts of climate variability. The reduction of water bodies, coupled with the 
expansion of impervious surfaces, can exacerbate urban flood risk and undermine the city’s 
water security—an issue that is of critical importance for low-lying coastal cities vulnerable 
to sea-level rise and land subsidence (Rokni et al., 2014; Neumann et al., 2015). 

The expansion of built-up areas is further substantiated by the NDBI analysis, which 
shows a clear increase in the spatial extent and intensity of urbanized land. The 
transformation of peri-urban and agricultural landscapes into built-up zones is evident both 
from the temporal trend in NDBI values and from spatial mapping outputs. The negative 
correlations found between NDVI and NDBI, and between NDWI and NDBI, confirm that 
urban development is occurring primarily at the expense of natural land covers, a dynamic 
commonly observed in developing coastal cities. The integration of spectral index analysis 



Hikmah & Manurung (2025)    56 

 
AES. 2025, VOLUME 3, ISSUE 1                                                                                                https://doi.org/10.61511/aes.v3i1.2025.1883 

with a CNN-based classification model in this research significantly improved the mapping 
of complex urban land cover, especially in heterogeneous or transitional zones where 
traditional thresholding approaches are less reliable. The CNN model’s ability to extract 
spatial and contextual features from multi-spectral data enhanced the thematic coherence 
and reduced classification noise, although its overall accuracy was moderate due to 
limitations in training data, spectral similarity among certain land cover types, and the 
medium spatial resolution of Landsat imagery (Ma et al., 2019; Zhu et al., 2017). 

Despite these constraints, the results demonstrate the potential of combining remote 
sensing indices and deep learning techniques for urban land cover monitoring in data-
scarce or rapidly changing environments. The discussion highlights the urgent need for 
integrated urban planning and sustainable development strategies in Semarang City. 
Maintaining and restoring urban green and blue spaces should be a policy priority, given 
their role in providing ecosystem services, mitigating flood and heat risks, and supporting 
urban resilience. Continuous, data-driven monitoring—enabled by advances in remote 
sensing and artificial intelligence—will be essential for guiding adaptive management, 
enforcing land use policies, and supporting disaster risk reduction efforts. Future research 
could address current methodological limitations by incorporating higher spatial resolution 
imagery, employing more advanced deep learning architectures, and expanding the 
classification to include more detailed land cover categories such as mangroves, wetlands, 
and urban green infrastructure (Ronneberger et al., 2015; Li et al., 2021). 
 
4. Conclusions 
 

This study provides a comprehensive analysis of long-term land cover change in 
Semarang City from 2000 to 2025 by integrating multi-temporal Landsat imagery, spectral 
indices (NDVI, NDWI, NDBI), and a deep learning approach using Convolutional Neural 
Networks (CNN). The findings reveal a significant decline in vegetation cover—especially in 
coastal and lowland areas—driven by rapid urban expansion and land conversion, as 
indicated by decreasing NDVI values and spatial contraction of green zones. Simultaneously, 
the extent of water bodies has diminished after 2015, as shown by NDWI analysis, reflecting 
the impacts of coastal reclamation, sedimentation, and increasing encroachment of built-up 
land. Built-up areas, as tracked by NDBI, have expanded steadily from the city core into peri-
urban and coastal regions, confirming the intensification of urbanization and the 
transformation of natural landscapes. 

The use of scatter plot analysis among NDVI, NDWI, and NDBI strengthened the 
evidence of strong ecological trade-offs, where increased urban surfaces have corresponded 
to losses in vegetation and water, underscoring the interconnected challenges of urban 
environmental management. Implementation of the CNN model demonstrated that 
integrating spectral indices with deep learning can improve land cover classification by 
capturing spatial texture and contextual information, although moderate overall accuracy 
highlights the need for further methodological enhancement and more detailed training 
data. 

The study highlights the urgency for sustainable urban planning, green infrastructure 
preservation, and integrated coastal management in Semarang City to mitigate the negative 
consequences of environmental degradation and climate-related hazards. The research 
underscores the value of combining remote sensing with machine learning as an effective 
strategy for monitoring and understanding spatial-temporal land cover dynamics in rapidly 
changing urban coastal settings. The findings are directly relevant for policy-makers, urban 
planners, and researchers working towards sustainable development and resilience in 
Indonesia and other urbanizing coastal regions worldwide. 
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